GOVERNMENT OF TAMILNADU
DIRECTORATE OF TECHNICAL EDUCATION
CHENNAI - 600 025

STATE PROJECT COORDINATION UNIT

Diploma in Electronics and Communication
Engineering

Course Code: 1040

M - Scheme

e-TEXTBOOK

DIGITAL ELECTRONICS

for

IV Semester DECE

Convener for ECE Discipline:

Dr.M.Jeganmohan,

Principal,

Government Polytechnic College,
Uthapanaickanoor,

Usilampatti — 625 536.

Team Members for Digital Electronics:

Mr.S.Balakrishnan,

Lecturer (SS) / ECE,

228, ArasanGanesan Polytechnic College,
Sivakasi — 626 130.

Mr.L.Murugesan,

Instructor / ECE,

228, ArasanGanesan Polytechnic College,
Sivakasi - 626 130.

Validated By

Dr. S.MohammedMansoorRoomi,
Assistant Professor / ECE,

Thiagarajar College of Engineering,
Madurai — 625 015.

11

1.2

1.3

14

1.5

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8

CONTENTS

UNIT — |
NUMBER SYSTEM AND BOOLEAN ALGEBRA

Number systems and binary codes

1.1.1 Number systems

1.1.2 Conversion

1.1.3 Binary codes

Boolean algebra and de-morgan’s theorems

1.2.1 Boolean Algebra

1.2.2 De-Morgan’s theorems

Karnaugh map

1.3.1 Two-variable K-map, Three variable K-map, Four variable K-map
1.3.2 Truth table to K-map, Logic equation to K-map, Logic function to K-map
1.3.3 Pairs, Quads and Octets

1.3.4 Simplification using K-map

1.3.5 Don’t care conditions

Logic gates

1.4.1 Types of logic gates

1.4.2 Implementation of logic functions using gates

1.4.3 Realization of logic gates using universal gates

1.4.4 Simplification of logic expression using Boolean techniques
1.4.5 Boolean expression for outputs of logic circuits

Digital logic families

1.5.1 Types of Logic families

1.5.2 Characteristics of logic families

1.5.3 TTL NAND gate

1.5.4 CMOS NAND gate

1.5.5 Tristate logic gates

UNIT I
COMBINATIONAL CIRCUITS

Binary Arithmetic

2.1.1 Binary Addition

2.1.2 Binary Subtraction

2.1.3 Representation of negative numbers
2.1.4 Subtraction using complement methods
Half Adder

Full Adder

Half Subtractor

Full Subtractor

Parallel adder

Serial adder

BCD adder

47
47
48
49
50
52
54
55
56
57
58
58

2.9

2.10
211
2.12
2.13
2.14

3.1

3.2

3.3

Encoder

Decoder

BCD to seven segment decoder
Multiplexer

Demultiplexer

Parity generator and checker

UNIT — 1l
SEQUENTIAL CIRCUITS

Flip-flops

3.11
3.1.2
3.13
3.14
3.15
3.16
3.1.7

SR Flip-flop

CSR Flip-flop

JK Flip-flop

JKMS Flip-flop

T Flip-flop

D Flip-flop

Triggering of Flip-flop

Counters

3.2.1

3.2.2
3.2.3

3.24

3.25
3.2.6

Asynchronous counter

3.2.1.1 Four bit binary asynchronous (ripple) UP counter
3.2.1.2 Four bit binary asynchronous (ripple) DOWN counter
3.2.1.3 Four bit binary asynchronous (ripple) UP / DOWN counter
Decade counter

Modulo—N counter

3.2.3.1 Mod-3 counter

3.2.3.2 Mod-7 counter

Synchronous counter

3.2.4.1 Four bit binary synchronous UP counter

3.2.4.2 Four bit binary synchronous DOWN counter

3.2.4.3 Four bit binary synchronous UP/DOWN counter
Johnson counter

Ring counter

Registers

3.3.1
3.3.2
3.3.3
3.34
3.35

4-bit shift register

Serial IN Serial OUT
Serial IN Parallel OUT
Parallel IN Serial OUT
Parallel IN Parallel OUT

60
61
63
66
69
72

75
75
76
77
79
81
81
82
84
84
84
86
88
88
90
90
91
92
93
94
96
96
98
99
99
100
100
101
102

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9

4.10
411
4.12
4.13
414

5.1

5.2

5.3

UNIT - IV
MEMORY DEVICES
Classification of memories
RAM organization
Static RAM
4.3.1 Bipolar Static RAM Cell
4.3.2 MOS Static RAM Cell
Dynamic RAM
SDRAM
DDR SDRAM
Read only memory
ROM organization
Expanding memory
4.9.1 Expanding word size
4.9.2 Expanding memory capacity
PROM
EPROM
EEPROM
Flash memory
Anti fuse technology

UNIT -V
MICROPROCESSOR - 8085
Introduction to microprocessor
5.1.1 Evolution of microprocessor
5.1.2 8085 Microprocessor
5.1.3 Architecture
Instruction set and Addressing modes
5.2.1 Instruction format
5.2.2 Classification of instructions based on size
5.2.3 Classification of instructions based on function
5.2.4 Instruction set
5.2.4.1 Data transfer instructions
5.4.2.2 Arithmetic instructions
5.2.4.3 Logic and bit manipulation instructions
5.2.4.4 Branch instructions
5.2.4.5 Machine control instructions
5.2.5 Addressing modes
Machine cycle and Instruction cycle
5.3.1 Machine cycle
5.3.1.1 Opcode fetch
5.3.1.2 Memory read
5.3.1.3 Memory write
5.3.1.4 1/O read
5.3.1.5 1/O write

104
105
107
107
108
109
111
112
113
114
115
115
116
116
118
119
120
121

123
124
125
129
133
133
133
134
135
135
137
139
141
144
145
148
148
148
150
151
152
153

5.4

5.3.2 Instruction cycle
I/0 mapping and Interrupts
5.4.1 1/0 mapping schemes
5.4.1.1 Memory mapped I/O
5.4.1.2 1/0 mapped 1/0
5.4.1.3 Comparison
5.4.2 Interrupts
5.4.2.1 Types of interrupts
5.4.2.2 8085 Interrupts
5.4.2.3 Interrupt priority
5.4.2.4 Interrupt handling instructions
5.4.2.,5 Summary of 8085 interrupts

154
156
156
156
157
158
159
159
160
161
162
165

SYLLABUS

UNIT -1 :NUMBER SYSTEM AND BOOLEAN ALGEBRA

Binary, Octal, Decimal, Hexadecimal - Conversion from one to another. Binary codes — BCD
code, Gray code, Excess 3 code.

Boolean Algebra- Boolean postulates and laws- De-Morgan’s theorem- Simplification of
Boolean expressions using Karnaugh map (up to 4 variables-pairs, quad, octets)- Don’t care
conditions and constructing the logic circuits for the Boolean expressions.

LOGIC GATES AND DIGITAL LOGIC FAMILIES:

Gates — AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR - Implementation of logic
functions using gates - Realization of gates using universal gates- Simplification of
expression using Boolean techniques- Boolean expression for outputs.

Digital logic families —Fan in, Fan out, Propagation delay - TTL,CMOS Logics and their
characteristics - comparison and applications -Tristate logic.

UNIT - 11 :COMBINATIONAL CIRCUITS

Arithmetic circuits - Binary — Addition, subtraction, 1’s and 2’s complement - Signed binary
numbers- Half Adder- Full Adder- Half Subtractor - Full Subtractor- Parallel and serial
Adders- BCD adder.

Encoder and decoder — 3 to 8 decoder, BCD to seven segment decoder- Multiplexer- basic 2
to 1 MUX, 4 to 1 MUX, 8 to 1 MUX - applications of the MUX — Demultiplexer - 1 to 2
demultiplexer, 1 to 4 demultiplexer, 1 to 8 demultiplexer - Parity Checker and generator.

UNIT = 111 :SEQUENTIAL CIRCUITS

FLIP FLOPS - SR, JK, T, D FF, JK- MS FF - Triggering of FF — edge & level, Counters — 4
bit Up - Down Asynchronous / ripple counter - Decade counter- Mod 3, Mod 7 counter.

4 bit Synchronous Up - Down counter - Johnson counter, Ring counter

REGISTERS

4-bit shift register- Serial IN Serial OUT- Serial IN Parallel OUT - Parallel IN Serial OUT-
Parallel IN Parallel OUT

UNIT - IV :MEMORY DEVICES

Classification of memories - RAM organization - Address Lines and Memory Size- Read
/write operations- Static RAM - Bipolar RAM cell- Dynamic RAM- SD RAM- DDR RAM.
Read only memory — ROM organization- Expanding memory- PROM- EPROM- and
EEPROM - Flash memory- Anti Fuse Technologies.

UNIT -V :MICROPROCESSOR - 8085

Evolution of microprocessor 8085 — Architecture of 8085-

Instruction sets- Addressing modes - Memory mapped 1/0 and 1/0 mapped I/O and its
Comparison.

Machine cycle — Opcode fetch - memory read- memory write- I/O read, /0O write -
Instruction cycle (Timing diagram) for MOV r1, r2 instruction.

Interrupts (types & Priorities)

UNIT -1
NUMBER SYSTEM AND BOOLEAN ALGEBRA

11 NUMBER SYSTEMS AND BINARY CODES
1.1.1 Number systems

Number systems other than the familiar decimal (base 10) number system are used in the
computer field and digital systems. Digital computers internally use the binary (base 2)
number system to represent data and perform arithmetic calculations. The hexadecimal
(base 16) number system is a shorthand method of working with binary numbers. The octal
(base 8) number system is also less commonly used in digital computers.

The different number systems are:
1. Decimal number system

2. Binary number system

3. Octal number system and

4. Hexadecimal number system

Decimal number system

We use the decimal number system in our day-to-day life for representing numbers. It is a
positionalnumber system. It has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The base (or radix,
or weight) of the decimal number system is 10. The place value of each position is given
below:

| 10° | 120° | 10" [120° | . | 10" [10" | 10° |
1000 100 10 1 . 0.1 0.01 0.001

Example:

347265=3x10%+4x10°+7x 10" +2x 10° + 6 x 10 + 5 x 10
=3x1000+4x100+7x10+2x1+6x0.1+5x0.01

Symbols used: 0,1, 2, 3,4,5,6,7,8and 9.
Base (or radix, or weight): 10
Place value: 10%, 10% 10", 10°. 107, 102, 107

Binary number system

Binary number system is used in computers and digital circuits for representing numbers. It
has only two symbols: 0 and 1. The base (or radix, or weight) of the binary number system is
2. The place value of each position is given below:

L2 [22 [2 | 22 [. | 20 [2° | 2° |
8 4 2 1 . 05 025 0125

Example:

1011.01=1x2°+0x 22+ 1x 2t +1x2°+0x 2 +1x 22
=1x8+0x4+1x2+1x1+0x05+1x0.25
=11.25 (in decimal)

Symbols used: 0 and 1
Base (or radix, or weight): 2
Place value: 2° 2%, 21, 2% . 21 22 23 |

Octal humber system

Octal numbers are used to represent binary numbers. It has eight symbols: 0, 1, 2, 3, 4, 5, 6
and 7. The base (or radix, or weight) of the octal number system is 8. The place value of each
position is given below:

| & [8 | & [8 [. [8 | 8 | 8 |
512 64 8 1 .~ 0125 0015625 0.001953125

Example:

722=7x8"+2x8"+2x8*
=7x8+2x1+2x0.125
=58.25 (in decimal)

Symbols used: 0,1, 2, 3,4,5,6 and 7
Base (or radix, or weight): 8
Place value: 83, 82, 81, g8°. 8'1, 8'2, 83 ...

Hexadecimal number system

Hexadecimal numbers are used to represent binary numbers. It has sixteen symbols: 0, 1, 2, 3,
4,5,6,7,8,9, A, B, C, Eand F. The base (or radix, or weight) of the hexadecimal number
system is 16. Here the decimal number for ‘A’ is 10, ‘B’ is 11, ‘C’ is 12, ‘D’ is 13, ‘E’ is 14
and ‘F’ is 15. The place value of each position is given below:

| 168 | 16° | 16" | 16" [. | 16" | 167 | 167 |
4096 256 16 1 . 0.0625 0.00390625 0.000244140625
Example:

3CA=3x16"+12x16°+10x 16*
=3x16+12x1+10x0.0625
= 60.625 (in decimal)

Symbolsused: 0,1, 2,3,4,5,6,7,8,9,A,B,C,D,Eand F
Base (or radix, or weight): 16
Place value: 16%, 16%, 16", 16°. 167, 16 167

1.1.2 Conversion

Decimal to binary conversion

i) Integer numbers

The “double dabble” method is used to convert decimal number to binary number. In
this method, the decimal number is divided by 2 repeatedly and the remainders are noted after
each division. We have to continue until we get zero in the quotient. The remainders are
taken from bottom to top to get the binary number.

Example: To convert the decimal number 27 to binary number

27 +2 =13 — Remainder
13+2= 6 — Remainder
6 +2=3 — Remainder
3 +2=1 — Remainder
1 +2= 0 — Remainder

PP OR R

Therefore, 27,0 = 11011,

ii) Fractional numbers

The decimal number is multiplied by 2 repeatedly and the carries integer part (whole
numbers) is noted after each multiplication. We have to continue until we get zero in the
fraction. The process may be stopped after six places. The carries are taken from top to
bottom to get the binary number.

Example: To convert the decimal number 0.85 to binary number.

0.85x2=1.7=0.7 with carry — 1
0.7x2 =1.4=0.4 with carry — 1
04x2 =0.8=0.8 with carry — 0
0.8x2 =1.6=0.6with carry — 1
0.6 x2 =1.2=0.2 with carry — 1 L
02x2 =04=04withcarry -0 Y

Therefore, 0.85;0 = 0.110110,

Decimal to octal conversion

i) Integer numbers

The “octal dabble” method is used to convert decimal number to octal number. In this
method, the decimal number is divided by 8 repeatedly and the remainders are noted after
each division. We have to continue until we get zero in the quotient. The remainders are
taken from bottom to top to get the octal number.

Example: To convert the decimal number 175 to octal number

21 =8 = 2 — Remainder 5
2 -8 =0 — Remainder 2

175+8 =21 — Remainder 7]

Therefore, 1759 = 2573
ii) Fractional numbers

The decimal number is multiplied by 8 repeatedly and the carries (ie.) integer part
(whole numbers) is noted after each multiplication. We have to continue until we get zero in
the fraction. The process may be stopped after three places. The carries are taken from top to
bottom to get the octal number.
Example: To convert the decimal number 0.23 to octal number.

0.84 x 8 =6.72 = 0.72 with carry — 6

0.23 x 8 =1.84 = 0.84 with carry — 1
0.72 x 8 =5.76 = 0.76 with carry — 5

Therefore, 0.2319 = 0.1655

Decimal to hexadecimal conversion

i) Integer numbers

The “hex dabble” method is used to convert decimal number to hexadecimal number.
In this method, the decimal number is divided by 16 repeatedly and the remainders are noted
after each division. We have to continue until we get zero in the quotient. The remainders are
taken from bottom to top to get the hexadecimal number.

Example: To convert the decimal number 2479 to hexadecimal number

154 +16 =9 — Remainder 10 — A

2479 + 16 = 154 — Remainder 15 — F I
9-+16 =0 — Remainder 9 — 9

Therefore, 247919 = 9AF 6

ii) Fractional numbers

The decimal number is multiplied by 16 repeatedly and the carries (ie.) integer part
(whole numbers) is noted after each multiplication. We have to continue until we get zero in
the fraction. The process may be stopped after three places. The carries are taken from top to
bottom to get the hexadecimal number.

10

Example: To convert the decimal number 0.23 to hexadecimal number.

0.23x16=3.68 =0.68 withcarry -3 — 3
0.68 x 16 = 10.88 = 0.88 with carry — 10 — A
0.88 x 16 = 14.08 = 0.08 with carry — 14 — E

Therefore, 0.2319 = 0.3AE6

Binary to decimal conversion
i) Integer numbers

The given binary number can be converted to decimal number by using the following
procedure:

Step 1 : Write the binary number

Step 2 : Write the place value (weight) directly under the binary number
Step 3 : If the binary digit is zero, cross out the decimal weight

Step 4 : Add the remaining weights to get the decimal number.

Example: To convert the binary number 1011 to decimal number

Stepl:1 0 1 1 (Binary number)

Step2:8 4 2 1 (Place value)

Step'3:8 4 2 1 (Cross out)

Step4:11 (Add, to get the decimal number)

Therefore, 1011, = 1149
ii) Fractional numbers

The same procedure used for the integer numbers can be used for fractional numbers also.

Example: To convert the binary number 0.101 to decimal number

Stepl: 1 0 1 (Binary number)

Step2:05 0.25 0.125 (Place value)

Step3:0.5 0.25 0.125 (Cross out)

Step 4 : 0.625 (Add, to get the Decimal number)

Therefore, 0.101, = 0.6251,

Binary to octal conversion

The binary numbers for the octal numbers from 0 to7 are given in the following table:

Binary Octal
000 0
001
010
011
100
101
110
111

N[OOI WIN|EF-

11

The following procedure can be used for converting the binary number to octal number:

Step 1 : Group the binary digits in threes, starting at the binary point.
Step 2 : Convert each group of three to its octal equivalent

Example: To convert the binary number 1101110.101011 to octal number

Step1:001 101 110 . 101 011 (Group)
Step2: 1 5 6 . 5 3 (Octal equivalent)

Therefore, 1101110.101011, = 156.535

Binary to hexadecimal conversion

The binary numbers for the hexadecimal numbers from 0 to F are given in the following
table:

Binary Hexadecimal
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MmM|OO|m>|lo|lo|vwlo|u|s|lw|Nd|—|o

The following procedure can be used for converting the binary number to octal number:

Step 1 : Group the binary digits in fours, starting at the binary point.
Step 2 : Convert each group of four to its hexadecimal equivalent

Example: To convert the binary number 1101110.101011 to hexadecimal number

Step1:0110 1110 . 1010 1100 (Group)
Step2: 6 E . A C (Hexadecimal equivalent)

Therefore, 1101110.101011, = 6E.AC1s

12

Octal to decimal conversion

i) Integer numbers

The given octal number can be converted to decimal number by using the following
procedure:

Step 1 : Write the octal number

Step 2 : Write the place value (weight) directly under the octal number
Step 3 : Multiply the octal number by the place value

Step 4 : Add the values to get the decimal number.

Example: To convert the octal number 257 to decimal number
Stepl: 2 5 7 (Octal number)
Step2: 64 8 1 (Placevalue)
Step3:128 40 7 (Multiply)
Step4: 175 (Add, to get the Decimal number)
Therefore, 257g = 17519

ii) Fractional numbers

The same procedure used for the integer numbers can be used for fractional numbers also.
Example: To convert the octal number 0.41 to decimal number

Stepl: 4 1 (Octal number)

Step2: 0.125 0.015625 (Place value)

Step3: 05 0.015625 (Multiply)

Step 4 : 0.515625175 (Add, to get the Decimal number)

Therefore, 0.41g = 0.51562517519

Octal to binary conversion

The following procedure can be used for converting the octal number to binary number:

Step 1 : Write the octal number
Step 2 : Write the three digit equivalent binary number

Example: To convert the octal number 34.56 to binary number

Stepl: 3 4 . 5 6 (Octal number)
Step2: 011 100 . 101 110 (Binary equivalent)

Therefore, 34.56g = 11100.10111,

13

Octal to hexadecimal conversion
The following procedure can be used for converting the octal number to binary number:

Step 1 : First convert the octal number to binary number
Step 2 : Then, convert the binary number to hexadecimal number (procedure already given)

Example: To convert the octal number 34.56 to binary number

Stepl: 3 4 . 5 6 (Octal number)
Step2: 011 100 . 101 110 (Binary equivalent)
Step 3: 0001 1100 . 1011 1000 (Group of 4-bits)
Step4: 1 C . B 8 (Hexadecimal number)

Therefore, 34.56g = 1C.B845

Hexadecimal to decimal conversion

i) Integer numbers

The given hexadecimal number can be converted to decimal number by using the following
procedure:

Step 1 : Write the hexadecimal number

Step 2 : Write the place value (weight) directly under the hexadecimal number
Step 3 : Multiply the hexadecimal number by the place value

Step 4 : Add the values to get the decimal number.

Example: To convert the hexadecimal number 8E6 to decimal number
Stepl: 8 E 6 (Hexadecimal number)
Step2: 256 16 1 (Place value)
Step3:2048 224 6 (Multiply)
Step 4 : 2278 (Add, to get the Decimal number)
Therefore, 8E616 = 227819

ii) Fractional numbers

The same procedure used for the integer numbers can be used for fractional numbers also.
Example: To convert the hexadecimal number 0.39 to decimal number

Stepl: 3 9 (Hexadecimal number)

Step2: 0.0625 0.00390625 (Place value)

tep3: 0.18755 0.03515625 (Multiply)

Step 4 : 0.22270625 (Add, to get the Decimal number)

Therefore, 0.3915 = 0. 0.2227062519

14

Hexadecimal to binary conversion

The following procedure can be used for converting the hexadecimal to binary number:

Step 1 : Write the Hexadecimal number
Step 2 : Write the four digit equivalent binary number

Example: To convert the hexadecimal number 7A.2D to binary number

Stepl: 7 A . 2 D (Hexadecimal number)
Step2: 0111 1010 . 0011 1101 (Binary equivalent)

Therefore, 7A.2D16 = 1111010.00111101,

Hexadecimal to Octal conversion

The following procedure can be used for converting the hexadecimal number to octal
number:

Step 1 : First convert the hexadecimal number to binary number
Step 2 : Then, convert the binary number to octal number (procedure already given)

Example: To convert the hexadecimal number 7A.2D to octal number

Stepl: 7 A . 2 D (Hexadecimal number)
Step2: 0111 1010 . 0011 1101 (Binary equivalent)
Step3: 001 111 010 . 001 111 010 (Group of 3-bits)
Step4d: 1 7 2 .1 7 2 (Octal number)

Therefore, 7A.2D1g = 172.172g

15

1.1.3 Binary codes

We use the decimal code to represent numbers. Digital electronic circuits in computers and
calculators use mostly the binary code to represent numbers. Many other special codes are
used in digital electronics to represent numbers, letters, and punctuation marks and control
characters. These special codes are generally called binary codes. Some of the special binary
codes are BCD code, Gray code, and Excess 3 code.

BCD Code (Natural BCD code)

BCD is an abbreviation for Binary-Coded Decimal. In this code, decimal digits O through 9
are represented by their binary equivalents using 4 bits (binary digits) individually. For
example, the decimal number 429 is expressed in BCD as follows:

Decimal number: 4 2 9
BCD number : 0100 0010 1001

The lowest BCD digit is 0000 and the highest BCD digit is 1001. In general, BCD codes are
also called 8421 code. The main advantage of 8421 code is that converting to and from
decimal numbers is very easy.

Excess-3 Code

This is another form of BCD code. The code for each decimal digit is obtained by adding
decimal number 3 to the natural BCD code. For example, decimal number 2 is coded as 0010
+ 0011 = 0101 in Excess-3 code. It is a self-complementing code which is very much useful
in performing subtraction operation in digital systems. The Excess-3 codes for the decimal
numbers from 0 to 9 are given in the following table.

Decimal number Natural BCD code Excess-3 code
0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Gray Code
It is a special binary code used in optical encoders. In this code, only one bit will change each

time the decimal number is incremented. The BCD codes and Gray codes for the decimal
numbers from O to 15 are given in the following table.

16

Natural BCD

Decimal number Gray code
code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 0001 0000 1111
11 0001 0001 1110
12 0001 0010 1010
13 0001 0011 1011
14 0001 0100 1001
15 0001 o101 1000

17

1.2 BOOLEAN ALGEBRA AND DE-MORGAN’S THEOREMS

1.2.1 Boolean Algebra

In the middle of the 19" century, an English mathematician George Boole developed rules for
manipulations of binary variables, known as Boolean algebra. This is the basis for all digital
systems like computers, calculators, etc. Binary variables can be represented by a letter
symbol such as A, B, X, Y, etc. The variable can have only one of the two possible values at
any time either 0 or 1. The following are the operators used in Boolean algebra.

Operator Operation

= Equal (Assignment)

+ OR (Logic addition)

. AND (Logic multiplication)
— (Bar) NOT (Complement)

Boolean postulates and laws

Theorems
S.No Theorem
1. A=A
2. A(A+B)=AB
3. A+AB=A
4, (A+B)(A+B)=A
5. AB+AB=A
6. AA+B)=A
7. A+AB=A+B
8. A+BC=(A+B)(A+CQC)

Laws of complementation (NOT Laws)

S.No Law

0=1

1=0
IfA=0A=1
IfA=14=0
A=A

ISANESI RSN R

18

AND Laws

OR Laws

A+0=A
A+1=1
A+A=A
A+A=1

B|W N

Commutative Laws

The commutative laws allow the change in position of an AND or OR variable.

S.No Law
1. A+B=B+A
2. A.B=B.A

Associative Laws

The associative laws allow the grouping of variables.

S.No | Law
1. A+(B+C)=(A+B)+C
2. A.B.C)=(AB).C

Distributive Laws

The distributive laws allow the factoring or multiplying out of expressions.

S.No | Law
1. A.B+C)=(A.B)+(A.C)
2. A+(B.C)=(A+B).(A+C)

19

1.2.2 DeMorgan’s theorems

De Morgan contributed a lot for the Boolean algebra. Out of them, the following two
theorems are very important. It allows transformation from a sum-of-products form to a
products-of-sums form. De Morgan’s theorems are also useful in simplifying Boolean
equations.

First theorem

Statement:

The complement of a sum of variables is equal to the product of their complements.
Equation:
A+ B =4.B

Logic diagram :

IOt = TR

wel|

Proof:

We have to show the left side equals the right side for all possible values of A and B. The
following table proves the De Morgan’s first theorem.

A+ B - = A.B
A B A+B (LHS) A B (RHS)
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

In the above table, LHS = RHS. Hence, the De Morgan’s first theorem is proved.
Second theorem
Statement:

The complement of a product of variables is equal to the sum of their complements.

Equation:

20

Logic diagram :
A_: | AB PR A+ B
B — B —

We have to show the left side equals the right side for all possible values of A and B. The
following table proves the De Morgan’s second theorem.

Proof:

A8 | - _ A+
A B AB | hg | 4 B | Brus)
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

In the above table, LHS = RHS. Hence, the De Morgan’s second theorem is proved.

1.3 KARNAUGH MAP

Karnaugh map (K-map) is a graphical technique which provides a systematic method for
simplifying Boolean expressions. In this technique, the information contained in truth table is
represented in a map form called K-map.

1.3.1 Two-variable K-map
Follow the steps given below to draw a two-variable K-map.

Draw a table with 2 rows and 2 columns with an extension line at the top left corner.
Mark A for the Rows and B for the Columns.

Put A and 0 for the first row. Put A and 1 for the second row.

Put B and 0 for the first column. Put B and 1 for the second column.
Put the numbers inside each box (at the bottom right corner) as 0, 1, 2 and 3 row wise.

I3

gk wNE

21

Three-variable K-map

Follow the steps given below to draw a three-variable K-map.

1.
2.

3.

ok~

Draw a table with 4 rows and 2 columns with an extension line at the top left corner.
Mark AB for the Rows and C for the Columns.

Put AB and 00 for the first row, AB and 01 for second row, A B and 11 for third row, AB
and 10 for forth row.

Put ¢ and 0 for the first column. Put C and 1 for the second column.
Put the numbers inside each box (at the bottom right corner) as 0, 1, 2, 3, 6, 7, 4 and 5
row wise.

=
Fal-}

AB 1 5

AB 10

Four-variable K-map

Follow the steps given below to draw a three-variable K-map.

1.
2.

3.

Draw a table with 4 rows and 4 columns with an extension line at the top left corner.
Mark AB for the Rows and CD for the Columns.

Put AB and 00 for the first row, AB and 01 for second row, A B and 11 for third row, AB
and 10 for forth row.
Put €D and 00 for the first row, C D and 01 for second row, C D and 11 for third row,

CD and 10 for forth row.
Put the numbers inside each box (at the bottom right corner) as 0, 1, 3, 2, 4, 5, 7, 6, 12,
13,15, 14, 8,9, 11 and 10 row wise.

22

CD CD ¢D ¢D
N0 00 01 11 10

\

ABOO| o 4 3 o
AB Ol L 4 4 &
AB 11 ol 13] 15| 14
AB 101 g o 11 10

1.3.2 Truth table to K-map

Once the K-map is drawn we have to transfer the truth table information to the K-map.

Follow the steps given below to fill up the K-map.

1. Look at the truth table carefully.
2. Identify the input combinations (A, B, C and D) for which the outputs are 1s. (Use
complements of the variables for zeros).
3. Put 1s in the corresponding boxes in the K-map.
4. Put Os in all the remaining boxes.
Example
Inputs Output CD CD CD CD
A|B|C|D Y
ololo0lo0 1 aee 00 01 11 10
0/]0]0]|1 0 A D
1 0 0
00|10 0 AB 00 0 0 1 3 2
00|11 0 ~
0 0 0
0j]1]0]0 1 AB 01 1 4 5 7 6
01101 0
01110 0 AB 11 012 013 115 114
0Oj1|1]|1 0 =
1/0/0]0 0 AB100809 111 110
11001 0
110(11]0 1
110111 1
111(0]0 0
1{1]0]|1 0
111(1]0 1
111111 1

23

Logic equation to K-map

Sometimes, logic equation will be given instead of truth table. Follow the steps given below
to fill up the K-map using the logic equation.

1. Look at the logic equation carefully.

2. Each term in the equation is called min-term. Put 1s in the corresponding boxes in the K-
map for all the min-terms.

3. Put Os in all the remaining boxes.

Example
F= ABCD+ ABCD+ ABCD + ABCD + ABCD + ABCD
CD CD CD CD
AP 00 01 11 10

ABool 1 | 0| O] O
0 1 3 2
ABO1l 1] 0| o0 | oO
4 5 7 6
AB 11] O 0 1 1
12 13 15 14
AB 10| 0o | 0 | 1 1
8 9 1 10

Logic function to K-map

If the logic function is given, follow the steps given below to fill up the K-map.
1. Look at the logic function carefully.

2. Put 1s in the corresponding boxes in the K-map for all the numbers given in the equation.
3. Put Os in all the remaining boxes.

Example
F=) m(0,410,11,14,15)

CD CD CD CD
20 00 01 1110

AB ool 1 | 0| 0[O
0 1 3 2
AB Ol 1] 0] o o0
4 5 7 6
AB 11l o | o | 1 | 1
12 13 15 14
AB 10l 0 | 0 | 1 1
8 9 11 10

24

1.3.3 Pairs, Quads and Octets

Once the K-map is filled with 1s and 0s, we have to identify the pairs, quads and octets in
order to simplify the Boolean expressions.

Pairs

If there are two 1s adjacent to each other, vertically or horizontally, we can form a pair. A
pair eliminates one variable and its complement.

C

C

N

AB 00| G_|_)—— Pair
0 1
ABoO1| 0 | O

2 3

C

6 7

AEW 0
4 5

Pair

AB11m 0

Here, for the boxes 0 and 1 ie. first row and first column & second column, C is changing

from complement form to uncomplement form. Hence, C is eliminated and we get AB.For
the boxes 4 and 6 ie.first column and third row & forth row, B is changing from

uncomplement form to complement form. Hence, B is eliminated and we get AC. The
simplified equation is AB + AC.

Quads

If there are four 1s adjacent to each other, vertically or horizontally, we can form a quad. Two
variables and their complements are eliminated.

c ¢ CD CD CD CD
e 0 1 e 00 01 1110
— =) -
AB oo|[1)] © AB ool [1+ [1 [1*— Quad
B 0 1 0 1 3 2
AB 01| |1|]| O AB o1l o | 0| 0] O
2 3 4 5 7 6
AB 11]]|1 0 AB 11| 0 | O 1 1
B 6 7 12 13 15 4
AB 10 0 AB 10| 0o | o |l) Quad

1
—4 5 8 9
Quad/Y:E

Y=AB+AC
Octets

If there are eight 1s adjacent to each other, vertically or horizontally, we can form an octet.
Three variables and their complements are eliminated.

25

CD CD CD CD CD CD CD CD

A® 00 01 11 10 LA o1 1o
AB 1] 1 AB ool (T [1 | 1 1;\\
ABoo| 0 10 ||1T |1 A (O 17,] Octet
ABo1| 0 | 0 |]1 | 1 Apoilul 1111

4 5 7 6 5 7
™
a1 o o [f1 [4f—oOctet ~ AB11) 0, 000,
AB 1ol 0 | o 1| 1) AB10[0 |0 0 |O
v=C Y=4

Overlapping groups

We can use 1s in more than one loop of pairs, quads and octets. This type of groups is called
overlapping group.

c C
ABC 0 1 Overlapping
AB 00 (?0 0 1/
AB ot| [l 1
2 3
AB 11| |1 0
6 7
AB 10 \L4 0 ;

Rolling

It is obvious that when we roll the map, the first row and last row are adjacent to each other.
Similarly, the first column and last column are adjacent to each other. This is called rolling
the map. By this way also, we can form pairs, quads and octets.

CD CD CD CD
e 00 01 11, 10

AB 00| 1 Om_ds‘ 1
AB o] 1 | 1 | 1| 1
- 2 ! 8 Rolling
AB 11| 0 [0| 0] O
12 13 15 14
AB 0] 0 (T 11}/%

Redundant group

It is a group whose all 1s are overlapped by other groups. Redundant groups must be
removed.

26

ng

1.3.4 Simplification using K-map

e Note down the corresponding variables for the pairs, quads and octets from the K-map.
e If any variable goes from un-complemented form to complemented form, the variable can

be eliminated to form the simplified equation. Write the simplified products.

e It is noted that one variable & their complement will be eliminated for pairs, two
variables & their complements for quads and three variables & and their complements for

octets.

e By OR ing all the simplified products, we get the Boolean equation corresponding to the

entire K-map.
Example 1 :
Simplify the following logic equation
Y = AB C +ABC + ABC + ABC

Solution:

It is a three variable equation. The K-map for the given equation is,

BN

AB 00
AB 01
AB 11

AB 10

C

D Kl

0

i

C
1

4

0

0

B

0

Here, only one quad is formed. Hence, the simplified logic equation is,

Example 2 :

Simplify the following logic equation

Y=C

F=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

It is a four variable equation. The K-map for the given equation is,

CD CD CD CD

11

10

2\ 00 01
AB 1 0
AB 00 ﬂo

AB 01 LlJ 0

AB 11| O 0

AB 10 O 0

Here, one pair and one quad are formed. Hence, the simplified logic equation is,

Y =ACD + AC

27

Example 3 :

Simplify the following min term function
Y=Xm(3,4,5,6,7,8,10, 12, 13, 14, 15)

The maximum number in the function is 15. Hence, we have to draw a four variable K-map.

CD CD CD CD Overlapping
20 00 01 11 10 /

oo 0 | o |[T}¥ O
o 1! 3 @2

o1 [1 4 15;1/7 1|6/R"”i“g
AB M@t 1]

12 13 15 14

AB 10——l8 09 011 iTu“

s B ve]l

> |

Here, we have one pair, one quad and one octet. For pair, the equation is ACD. For quad,
AD .For octet, B. Hence, the simplified equation is,

Y=ACD+AD +B
1.3.5 Don’t care conditions

In some logic circuits, certain input conditions do not produce any specified outputs ie.
neither 0 nor 1. These conditions are called don’t care conditions and they are marked as ‘X’
in the truth table. The same may be marked in the K-map as ‘X’ in the corresponding boxes.
We can also use ‘X’ as ‘1’ to form pairs, quads and octets, if necessary.

Consider the following truth table.

Inputs Output
A|B|C|D Y
0(0]0]| O 1
00|01 X
0o(0|1]|0 X . _
olol 111 0 CD CD CD CD
ol11lo0 0 1 ABCD 00 01 11 10
0|10 1 X AB ool X 0 X
0 1 1 O 0 . (_Oj‘l O 3 0 2
0]1[1]1 0 A801h7 S
1/0(0|O0 0
1 0 0 1 0 AB 11 012 013 115_1]14
1]o0[1]0] 1 AB 10| 0 ogUT_%
1101 1 1
111|010 0
1/]1(0| 1 0
1/1(1/|0 1
1111 1 1

When we consider ‘X’ condition, we get two quads. Hence, the simplified equation is,
Y = AC + AC

28

1.4 LOGIC GATES
1.4.1 Logic gates

A qgate is a logic circuit with one output and one or more inputs. The output signal occurs
only for certain input combinations. The input and output signals are digital in nature ie.
either O (low) or 1 (high). All the possible input combinations and their corresponding output
conditions are noted in a table, called truth table.

In digital systems, two different voltage levels (Ov and 5v) are used to represent the logic
levels ‘0’ and ‘1°. If the high voltage level (5v) represents logic ‘1’ and low voltage level (0v)
represents logic ‘0’, then the system is called positive logic. But some systems use the low
voltage level (Ov) for logic ‘1’ and the high voltage level (5v) for logic ‘0’. This is called
negative logic. This is shown in the following figure.

Logic Value Signal Value Logic Value Signal Value
1 High H 0 H
0 — Low L I — L
Positive Logic Negative Logic

OR gate

OR gate has two or more inputs and only one output. It works according to the OR boolean
function. It follows the addition (+) law. It gives output when any one of the input is at logic
‘1’. The symbol, logic equation and truth table for OR gate are shown in the following figure.

Inputs | Output

A A Y
B B

For a two input OR gate, there are four cases of input combinations, 00, 01, 10 and 11.

==
==
=

Casel:A=0andB=0
In this case, the output (A+B)=(0+0)=0

Case2:A=0andB=1
In this case, the output (A+B)=(0+1)=1

Case3:A=1andB=0
In this case, the output (A+B)=(1+0)=1

Case4:A=1landB=1
In this case, the output (A+B)=(1+1)=1

29

For a three input OR gate, there are eight input combinations, 000, 001, 010, 011, 100, 101,
110 and 111. The generalized formula for the number of input combinations is 2", where ‘n’
is the number of inputs in the gate.

AND gate

AND gate has two or more inputs and only one output. It works according to the AND
boolean function. It follows the multiplication (.) law. It gives output only when all the inputs
are at logic ‘1’°. The symbol, logic equation and truth table for AND gate are shown in the
following figure.

Inputs | Output
A A | B Y
Y=A.B Y = A 0 |0 0
B B 0 |1 0
1 |0 0
1 |1 1

For a two input AND gate, there are four cases of input combinations, 00, 01, 10 and 11.

Casel:A=0andB=0
In this case, the output (A.B)=(0.0)=0

Case2:A=0andB=1
In this case, the output (A .B)=(0.1)=0

Case3:A=1landB=0
In this case, the output (A.B)=(1.0)=0

Case4:A=1landB=1
In this case, the output (A .B)=(1.1)=1

NOT gate

NOT gate has only one input and only one output. It works according to the complementation
law of boolean algebra. Its output is the complement of the input ie. the output is ‘1’ when the
input is ‘0’ and the output is ‘0’ when the input is ‘1°. The symbol, logic equation and truth
table for NOT gate are shown in the following figure.

- A _ Input | Output
A {>c Y=A v A A v

0 1
1 0

There are two cases of input combinations, 0 and 1.

30

Casel:A=0
In this case, the output (4) = (0) = 1

Case2:A=1
In this case, the output (4) = (1) =0

The other names of NOT gate are Inverter gate and Complement gate.

NOR gate

NOR gate is a combination of OR gate and NOT gate. An OR gate followed by a NOT gate is
a NOR gate. NOR gate has two or more inputs and only one output. It gives output only when
all the inputs are at logic ‘0’. The symbol, logic equation and truth table for NOR gate are
shown in the following figure.

A
O
B

Inputs | Output

B Y = 0 0 1
1
0

A+ B 0 0
1 0

1 1 0
For a two input NOR gate, there are four cases of input combinations, 00, 01, 10 and 11.

Casel:A=0andB=0
In this case, the output (A + B)=(0 + 0)=0=1

Case2:A=0andB=1
In this case, the output (4 + B)=(0 + 1)=1=0

Case3:A=1landB=0
In this case, the output (4 + B)=(1 + 0)=1=0

Case4:A=1landB=1
In this case, the output (4 + B)=(1 + 1)=1=0

NAND gate

NAND gate is a combination of AND gate and NOT gate. An AND gate followed by a NOT
gate is a NAND gate. NAND gate has two or more inputs and only one output. It gives output
only when any one of the input is at logic ‘0’. The symbol, logic equation and truth table for
NAND gate are shown in the following figure.

31

A.B -

Inputs | Output
A=) _ A Y
Y=4.B
B Y=4.

For a two input NAND gate, there are four cases of input combinations, 00, 01, 10 and 11.

o
i =l=)
=l E=]l]

ok~

Casel:A=0andB=0
In this case, the output (4.B)=(0.0)=0=1

Case2:A=0andB=1
In this case, the output (4.B)=(0.1)=0=1

Case3:A=1landB=0
In this case, the output (4. B) =(1.0)=0 =1

Case4:A=l1landB=1
In this case, the output (4. B)=(1.1)=1 =0

Exclusive OR (EX-OR) gate

EX-OR gate has two or more inputs and only one output. It gives output only when the inputs
are at different logic levels ie. when one input is ‘0’ the other input must be ‘1°. This gate can
be constructed using AND, OR and NOT gates. The symbol, logic circuit, logic equation and
truth table for EX-OR gate are shown in the following figure.

%

A Inputs | Output
:)D— Y-A®B A Y
B Y=-A® B

il (elle]
| ol loll@
Ol |O

For a two input EX-OR gate, there are four cases of input combinations, 00, 01, 10 and 11.

32

Casel:A=0andB=0
In this case, the output (A.B+A .B)=(1.0 +0.1)=(0+0)=0

Case2:A=0andB=1
In this case, the output (4 .B+A .B)=(1.1) +0.0)=(1+0)=1

Case3:A=1landB=0
In this case, the output (4 .B+A .B)=(0.0 +1.1)=(0+1)=1

Case4:A=1landB=1
In this case, the output (4 .B+A .B)=(0.1 +1.0)=(0+0)=0

Exclusive NOR (EX-NOR) gate

It is a combination of EX-OR gate and NOT gate. An EX-OR gate followed by a NOT gate is
EX-NOR gate. It has two or more inputs and only one output. It gives output only when the
inputs are at same logic levels ie. ‘00’ and ‘11°. This gate can be constructed using AND, OR
and NOT gates. The symbol, logic circuit, logic equation and truth table for EX-NOR gate
are shown in the following figure.

A >°7 4B
ey

n
I

B
A _ 0 10 1
B 0

1 1 1

For a two input EX-NOR gate, there are four cases of input combinations, 00, 01, 10 and 11.

Casel:A=0andB=0
In this case, the output (A.B+A. B)=0.0+0. 0

(1.0 +0.1)=(0+ 0)=0=1

Case2:A=0andB=1
In this case, the output (A.B+A. B)=0.14+0. 1

(1.1 4+0.0)=(1+0)=1=0

Case3:A=1andB=0
In this case, the output (A.B+A. B)=1.0+1. 0

0.0+1.1)=(0+ 1)=1=0

Case4:A=1landB=1
In this case, the output (A.B+A. B)=1.1+1. 1

(0.1 +1.0)=(0+0)=0=1

33

1.4.2 Implementation of logic functions using gates

The following table shows the various logic equations and their equivalent gates.

Logic equation Name of the gate Symbol

A NOT A {>°
A

A+B OR :D— Y=A+B
B

A —

A.B AND Y=AB
B —
A

A+ B NOR D_ Y=17B
B

A.B NAND Y=4.B

A
A.B+A B EX-OR B:)D—Y—AGBB
— A _
B+A. B EX-NOR B:)DO_M@B

The given logic function can be realized using gates as per the above table.

|

Different forms of logic functions:

There are two different forms of logic functions. They are,

1. Sum-of-products form (or) Minterm form - SOP
2. Product-of-sums form (or) Maxterm form - POS

Consider the following two logic functions.

Y= A.B)+(AB)+(B.C) .cvvrrrnn. 1
Y= (A+B+C).(A+B) el 2

The first equation has three terms. Each term is a product term. The logic function is the sum
of the product terms. This function is said to be in Sum-of-products form (or) Min term form.
Similarly, the second equation has two terms. Each term is a sum term. The logic function is
the product for the sum terms. Hence, this function is said to be in Product-of-sums form (or)
Max term form.

34

Implementation of logic functions using gates

Follow the steps given below to draw the logic diagram for the given logic function.

1. For a function in Sum-of-products form, the final output gate is an OR gate. For a
function in Product-of-sums form, the final output gate is an AND gate.

2. Realize the (.) function using AND gate.

3. Realize the (+) function using OR gate.

4. Realize the complement () function using NOT gate.
Example

1. Draw the logic diagram for the following logic function.
Y= (A4.B)+(A.B)+(B.C)

:D— Y=4B+A.B+B.C

C

2. Draw the logic diagram for the following logic function.
Y= (A+B+C).(A+B)

<& DEJFC

3. Draw the logic diagram for the following logic function.

aQw>
(N N
']

Ny

} Y=(A+B+C). (A4 +B)

S|

B _
B B.C

35

1.4.3 Realization of gates using universal gates

We can use only NAND gates for constructing all the other gates (ie. NOT, OR, AND, NOR,
EX-OR and EX-NOR). Similarly, we can useonly NOR gates for constructing all the other
gates. Hence, NAND and NOR gates are called universal gates.

Realization of gates using NAND gates only

1) NOT gate using only NAND gates

Y=A

=(A.4H ... Because A. A=A

Hence, when we tie the two inputs of an NAND gate together we get a NOT gate.

NS L e

2) OR gate using only NAND gates

Y=A+B
=A+B ... Double complementation will give the same function
=A.B Using De-Morgan’s first theorem, A + B = A . B

Two NAND gates are used for the two NOT functions. A third NAND gate is used for the (.)
and complement functions.

A A
:D—YA+B —=> A
B
}
B

Y=A.B
Y=A+B

3) AND gate using only NAND gates

Y=A.B

= A.B ... Double complementation will give the same function

One NAND gate is used for the A.B function. Another NAND gate is used for the
complement function.

36

A_ A _— ——
Y=A.B A.B Y=AB=AB
B — = 5

4) NOR gate using only NAND gates

Y= B

S| +

A
A. Using Using De-Morgan’s first theorem, A + B = A . B

Two NAND gates are used for the two NOT functions. Another two NAND gates are
required for implementing the (.) ie. AND function. Hence, totally four NAND gates are
required for realizing a NOR gate using only NAND gates.

] A
A - 1 J
L o .
D ~o)
___.-—/r Y=u.8
B — :DH Y-A+E

5) EX-OR gate using only NAND qgates

=

Y=A.B+A.B
= A.B +A. BDouble complementation will give the same function
=A.B . A.B ... Using De-Morgan’s first theorem,A + B = A . B

Two NAND gates are used for the two NOT functions Aand B. Another two NAND gates are

required for A.Band A. B. A final NAND gate is required for the (.) and complement
function. Totally five NAND gates are required for realizing an EX-OR gate using only
NAND gates.

A
s =

6) EX-NOR gate using only NAND gates

Y=A.B+A.B

When the output of an EX-OR gate is connected to a NOT gate, we get an EX-NOR gate.
Hence, EX-OR gate is realized first using five NAND gates. Sixth NAND gate is used to
realize the NOT gate. Totally six NAND gates are required for realizing an EX-NOR gate
using only NAND gates.

37

Realization of gates using NAND gates only

1) NOT gate using only NOR gates

Y=A
=@A+4 Because A+ A=A

Hence, when we tie the two inputs of a NOR gate together we get a NOT gate.

Y=A

A

2) OR gate using only NOR gates

=A+B ... Double complementation will give the same function

When the output of a NOR gate is connected to a NOT gate, we get an OR gate. One NOR
gate is used for A + B. Another NOR gate is used to implement the NOT function.

A A A+B S
Y=A+B |:> Y=A+B
B B Y=A +B

3) AND gate using only NOR gates

Y=A.B
=A.B ... Double complementation will give the same function
=A+B .. Using De-Morgan’s second theorem, 4 . B = A+B

Two NOR gates are used for Aand B. Another NOR gate is used for (+) and complement
functions.

38

4) NAND gate using only NOR gates

Y=A.B
=A+B Using De-Morgan’s second theorem, A . B = A+B

Two NOR gates are used for the two NOT functions. Another two NOR gates are required
for implementing the (+) ie. OR function. Hence, totally four NOR gates are required for

realizing a NAND gate using only NOR gates.
A —

>— Y=4.B
B —

5) EX-OR gate using only NOR gates

Y=A.B+A B
=A.B+A.B Double complementation will give the same function
= ﬂ . A.B Using De-Morgan’s first theorem, A + B = A . B
=A+B + A+ B ... Using De-Morgan’s second theorem, A . B = A+B

Two NOR gates are used for the two NOT functions Aand B. Another two NOR gates are
required for (+) and complement functions. Two more NOR gates are required for the final
(+) operation. Totally six NOR gates are required for realizing an EX-OR gate using only
NOR gates.

A
A
B:)D_ Y=A®B —>

B

Y=-A®B

Y= A+B+A+B

6) EX-NOR gate using only NOR gates

Y=A.B+A.B

When the output of an EX-OR gate is connected to a NOT gate, we get an EX-NOR gate.
Hence, EX-OR gate is realized first using five NOR gates. Another NOR gate is used to
realize the NOT gate. The last two NOR gates implemented for the NOT operation can be
removed because double complementation give the same function. Totally five NOR gates
are required for realizing an EX-NOR gate using only NOR gates.

39

1.4.4 Simplification of expression using Boolean techniques
We can simplify logic expressions using Boolean techniques (ie.)Boolean laws and theorems.

Example 1 : Simplify the expression Y =A B + AB

Y = AB+AB
= A (B +B) By factoring
= A (1) ...B+B=1
= A WAL T=A

Example 2 : Simplify the expression Y = ABC + ABC + ABC

Y = ABC + ABC + ABC
= ABC + ABC + ABC + ABC ... ABC + ABC = ABC
BC(A+A) + AB(C+C) By factoring
= BC + AB L AA=1

Example 3 : Simplify the expression Y = AB + AC + ABC(AB+C)

Y = AB + AC + ABC(AB+C)

= AB + AC + AABBC + ABCC Multiply
AB +AC +0+ABCBB=0,CC=C
AB+A4+C+ABC DeMorgan’s theorem AC=A+C
AB+C+A+ABC Rearrange
AB+C+A+BC Distributive law
A+AB+C+BC Rearrange

= A+B+C+B Distributive law

= A+C+B+B Rearrange

= A+C+1 ...B+B =1

= 1 Reduce

1.4.5 Boolean expression for outputs

The following steps are involved to find out the boolean expression for the output of the
given logic circuit.

Step 1 : Label all the inputs ie. A, B, C, D, etc.

Step 2 : Label all the gates in the circuit ie. A1, A2, A3, A4, etc.

Step 3 : Start with the input signals, write down the logic equation for the output of each
gate until the output is reached.

40

Example :

Find out the Boolean expression for the circuit given below:

Step 1
Step 2
Step 3

A

™

wie}

D>

~
|/

) o=
>

: Label all the inputs ie. A, B, C, D, E, Fand G.
- Label all the gates in the circuit ie. Al, A2, A3, A4, A5, A6and AT7.
: The output of ALisA+B

The output of A2isA + B
The output of A3ISE + F

The output of Ad is G
The output of A5 is CDG (E+F)

The output of A6isCD G (E + F)
The output is A7isA + B+CDG (E + F)

A+B A+B
Al A2
C

ATB+CDG (E+F)

}'
CDG(E+F)

ol

{>¢

41

15 DIGITAL LOGIC FAMILIES
1.5.1 Logic families

Gates are manufactured using different technologies. The following are some of the
technologies (or logic families) available in the market today.

Resistor-Transistor Logic (RTL)

Diode-Transistor Logic (DTL)

Transistor-Transistor Logic (TTL)

Integrated Injection Logic (I°L)

Complementary Metal Oxide Semiconductor (CMOS) Logic
Emitter-Coupled Logic (ECL)

ocoukrwhE

Out of these logic families, TTL and CMOS Logics are familiar.
1.5.2 Characteristics of Logic families
Some of the important characteristics of digital logic families are:

Power supply voltage

Fan-in

Fan-out

Propagation delay

Noise immunity and Noise margin
Power dissipation

ocoarwhE

Power supply voltage
It is the permissible power supply voltage range of the gate IC.

Fan-in
Fan-in of a logic gate is defined as the maximum number of inputs connected to a gate
without degradation of the input voltage levels.

Fan-out
Fan-out of a logic gate is defined as the maximum number of similar logic gates that can be
connected at the output without any degradation in output voltage levels.

Propagation delay
It is the time taken by gate for the output to change after inputs have changed. It is normally
represented in milliseconds or nanoseconds.

Power dissipation
It is the measure of the power consumed by a gate when all the inputs are fully driven. It is
normally expressed in milli watts or nano watts.

Noise immunity
It refers to the ability of a gate to tolerate noise without causing spurious changes in the
output voltage. It is also called noise margin.

42

1.5.3 Transistor-Transistor Logic (TTL) NAND gate

TTL gates (74 series) were introduced in the market to provide greater speed than DTL. A
typical TTL NAND gate is shown in the figure.

Vee

1

B e—

}{

This circuit has four bipolar junction transistors (Q1, Q2, Q3 and Q4), four resistors and one
diode. Transistor Q1 is a multi-emitter transistor in which the inputs A and B are applied.

When both A and B are high:

When both A and B are high, Q1 has no emitter current and its base-emitter junction is
forward biased. Hence, base current flows to Q2. This in turn, feeds base current to Q4.
Hence, Q4 conducts. As the Q2 collector goes low, Q3 is cut-off. Therefore, Q4 is conducting
and Q3 cut-off. Hence, we will get OV (ie.) logic ‘0’ at the output.

When either A or B goes low:

When either A or B goes low, Q1 will have base-emitter current and saturated. Hence, the
base of Q2 will be pulled to ground and cut-off. This will cause Q3 to conduct and Q4 to cut-

off. Hence, we will get supply voltage (Vcc) (ie.) logic ‘1’ at the output.

Specifications:

Power supply
Power dissipation
Propagation delay
Noise margin
Fan-out

(Vce)
(Pd)
(Td)
(V)
(FO)

+5 volts
100 mw
15 nsec
0.4 volts
10

43

1.5.4 CMOS Logic NAND gate

CMOS Logic has high package density and low power consumption. Hence, it is used in
battery operated devices. It works with a wide range of power supply. The figure shows the
circuit diagram of CMOS Logic NAND gate.

Voo
o

TQ% E D

AO

Fe————¢
[

‘}—Q

BO

This circuit has four MOS transistors. Q1 and Q2 are PMOS and Q3 and Q4 are NMOS. A
PMOS device will be turned ON when its gate input is low. An NMOS device will be turned
ON when its gate input is high. The circuit operation is explained below.

When both A and B are high:
When both A and B are high, Q1 and Q2 are cut off and Q3 and Q4 are turned ON. Hence,
the output is connected to the ground ie. the output is in ‘0’ level.

When A is low:
When A is low, Q1 will conduct and Q3 will turn off. Hence, the output is connected to
supply ie. the output is high.

When B is low:
Similarly, when B is low, Q2 will conduct and Q4 will turn off. Hence, the output is
connected to supply ie. the output is high.

Specifications:

Power supply (Vce) 3to 15 volts
Power dissipation (Pd) 10 nw
Propagation delay (Td) 25 nsec

Noise margin (Vmy 45% of Vpp
Fan-out (FO) Greater than 50

In CMOS logic any input should not be left open, either it must be connected to supply (ie.)
logic ‘1’ or to ground (ie.) logic ‘0’.

44

Comparison of TTL and CMOS logic families

Sl. No. Parameter TTL CMOS
1. Power Supply voltage 5 volts 3 to 15 volts
2. Power dissipation 100 mW (milli watt) 10 nW (nano watt)
3. Propagation delay 15 nsec (hano seconds) 25 nsec (nano seconds)
4, Noise margin 0.4 volts 45% of Vpp
5. Fan-out 10 Greater than 50

Applications of TTL and CMOS logic gates

TTL and CMOS logic gates are used in digital circuits, memories, etc. CMOS gates
are preferred over TTL for lower power applications such as battery operated devices.

1.5.5 Tristate Logic (TSL) gate

We know only two logic states namely low level ‘0’ and high level ‘1°. But there is a third
logic state which is called ‘high impedance’ state. In this third state, even though the output is
physically connected in the circuit, it behaves like an open circuit. A gate with high
impedance state is called Tristate gate.

Tristate Inverter Gate

This is similar to a NOT gate with an additional ENABLE input. When it is enabled, the gate
will work as ordinary NOT gate (ie.) the output is the complement of the input. When the
gate is not enabled, the output will be in ‘high impedance’ state. The symbol and truth table
of Tristate Inverter gate are shown in figure.

A Y=A
Enable
ENABLE | Input (A) | Output (Y)
0 X High
(Oorl) impedance
1 0 1
1 1 0

45

Tristate buffer

The symbol and truth table of Tristate buffer are shown in figure.

A I\ Y

Enable I/(

Il
>

ENABLE | Input (A) | Output (Y)
0 X High
(Oorl) impedance
1 0 0
1 1 1

When the buffer is enabled, the output follows the input. When the buffer is not enabled (ie.
disabled), the output will be in high impedance state.

COLLE

46

UNIT - 11

COMBINATIONAL CIRCUITS
Combinational circuits

In digital systems, there are two types of circuits, 1) Combinational logic circuits and 2)
Sequential logic circuits. In combinational circuits, the output depends only on the present
input conditions. But, in sequential circuits, the output depends not only on the present input
conditions but also on the previous output conditions.

2.1 Binary Arithmetic
Arithmetic circuits

Arithmetic circuits are the combinational logic circuits used to perform arithmetic operations
such as addition, subtraction, multiplication and division on binary numbers.

2.1.1 Binary addition

In addition, the first number is called augend and the second number is called is addend. The
result is called the sum. Sometimes, we may get carry also.

Augend
+ Addend
Carry Sum

The following rules are used in binary addition.

0 0 1 1
+0 +1 +0 +1
0 1 1 _ 10 sum=o0andCarry=1
1
1
_+1
11

Sum=1and Carry=1

In a binary number, the left most bit is called Most Significant Bit (MSB) and the rightmost
bit is called Least Significant Bit (LSB). Addition must be carried out bit by bit starting from
the LSB.

Examples :
. , 101
1) Add the binary number 101 and 10. (Apply basic rules) + 10
Answer :(111), 111
2) Add (10)1pand (3)10 in binary. carry
1
First convert the decimal numbers to binary. 1010 10
+ |11 +3
11'0 1 13

Answer :(1101); = (13)10

47

3) Add the binary numbers 11010 and 1100. AN
111
11010 26
+ (1100 +12
Answer :(100110), 90110 38
4) Add (3)10and (3)0 in binary. Ca”y1 1 o
First convert the decimal numbers to binary. 111 3
+ |11 +3
T4l
Answer :(110); = (6)10 110 6

2.1.2 Binary subtraction

In subtraction, the first number is called minuend and the second number is called is
subtrahend. The result is called the difference. Sometimes, we may get borrow also.

Minuend
- Subtrahend
Borrow Difference

The following rules are used in binary subtraction.

0 1 1 0
-0 -0 -1 -1
0 1 0 11 Difference =1, Borrow = 1

Subtraction must be carried out bit by bit starting from the LSB.
When we borrow a 1 from the next bit, we will get 10 (ie. 2 in decimal).

Examples :

1) Subtract : 1011 — 1001

1011
-1001
Answer : (10), T 0010
2) Subtract 1010 from 100101 .
1010 0510

100101 37
- 1010 +10
Answer :(11011), 11011 27

48

2.1.3 Representation of negative numbers

In decimal systems, we use (+) sign for positive numbers and (-) sign for negative numbers.
But in binary numbers, complement method is used for representing negative numbers. Two
types of complement methods are available.

1) 1’s complement method
2) 2’s complement method

Either 1’s complement or 2’s complement method is adopted in a particular digital system.

1°s complement

I’s complement is used to represent negative numbers. Each bit is subtracted from 1 (borrow
is ignored) to get the 1’s complement. A shortcut method is also used. Each bit in the given
number is complemented (0 to 1, 1 to 0) to get its 1’s complement.

Examples :
1) Find the 1’s complement of 101011.

010100 Otol,1to0
Answer :10100

2) Find the 1’s complement of 11110.
00001 ---- 0tol,1to0

Answer : 1

2’s complement

2’s complement is used to represent negative numbers. When we add 1 to 1’s complement,
we will get the 2°s complement of the given number.

Examples :
1) Find the 2’s complement of 101011.

1’s complement 010100 ---- 0tol,1t00
Add 1 + 000001
2’s complement 010101

Answer : (010101),

2) Find the 2’s complement of 11110.

1’s complement 00001 ---- Otol,1t00
Add 1 + 00001
2’s complement 00010

Answer :(00010),

49

2.1.4 Subtraction using complement methods

The number to be subtracted (subtrahend) is converted into 1’s complement form or 2’s
complement form to represent it as a negative number. Then it will be added to the first
number (minuend).

Minuend
+ Complement of Subtrahend
Difference

Binary subtraction using 1’s complement method

The following steps are used to subtract a number using 1’s complement method

1) Find the 1’s complement of the subtrahend.
2) Add the 1’s complement with the minuend.
3) Ifthereis any carry:
a. Add the carry (ie. add 1) to the result
b. The result is a positive number.
4) If there is no carry:
a. Find the 1’s complement of the result.
b. The result is a negative number.

Example 1 : Subtract 100101 from 101100

Here, the minuend is 101100
And the subtrahend is 100101

101100
- 100101
Difference

The 1’s complement of subtrahend 100101 is 011010. This should be added to the minuend.

Minuend 101100
Add 1’s complement of + 011010
Subtrahend

1___ 000110 Thereisacarry 1.
Add Carry +]
+ 000111 Result is positive.

Answer : + (111),

50

Example 2 : (54)10_- (62)10

Binary of 54 (Minuend) = 110110
Binary of 62 (Subtrahend) =111110

1’s complement of 111110 = 000001

Minuend 110110
Add 1’s complement of Subtrahend + 000001
110111 There is no carry.
Find 1’s complement
001000
- 001000 Result is negative.
Convert to Decimal - 8

Answer: - 8

Binary subtraction using 2’s complement method

The following steps are used to subtract a number using 2’s complement method.

1) Find the 2’s complement of the subtrahend.
2) Add the 2’s complement with the minuend.
3) If there is any carry:
a. Ignore the carry
b. The result is a positive number.
4) If there is no carry:
a. lIgnore the carry
b. Find the 2’s complement of the result.
c. The result is a negative number.

Example 1 : Subtract 100101 from 101100

Here, the minuend is 101100
And the subtrahend is 100101

101100
- 100101
Difference

The 2’s complement of subtrahend 100101 is 011011. This should be added to the minuend.

Minuend 101100
Add 2’s complement of Subtrahend + 011011
~T 000111 | Thereisacarry 1.

Ignore it.

+ 000111 | Result is positive.

Answer : + (111),

51

Example 2 : (54)10_- (62)10

Binary of 54 (Minuend) = 110110
Binary of 62 (Subtrahend) =111110

2’s complement of 111110 =000010

Minuend 110110
Add 2’s complement of Subtrahend + 000010
111000 There is no carry.
Find 2’s complement 000111
(1’s complement Plus 1) + 1
- 001000 Result is negative.
Convert to Decimal - 8
Answer: - 8

Signed binary numbers

In decimal systems, we use (+) sign for positive numbers and (-) sign for negative numbers.
In binary number system, an additional bit is used as the sign bit. A ‘0’ is used to represent a
positive number and a ‘1’ is used to represent a negative number.

| - r r [[[|
Sign
bit Magnitude bits

For example, an 8-bit signed number 01000100 represents a positive number, because the
sign bit is ‘0’. Its magnitude is 1000100. Hence, the equivalent decimal number is +68.
Similarly, the signed number 11000100 represents a negative number, because the sign bit is
‘1°. Its magnitude is 1000100. Hence, the equivalent decimal number is -68.

ie. 01000100 = +68
11000100 = -68

This type of representation for signed numbers is called ‘sign-and-magnitude representation’.
2.2 Half adder

Half adder adds two binary digits at a time. It has two inputs A and B, and two outputs SUM
and CARRY.

A ——> —> SUM

HA
B ——> —» CARRY

Figure : Block diagram

52

A
B)DﬁmzA@B

Carry =A.B

Figure : Logic diagram

SUM = AB+AB=A® B

CARRY =AB
Inputs Outputs
A B CARRY | SUM
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

As per the laws of binary addition, we get,

When A=0and B=0
0+0===>Carry=0,Sum=0

When A=0and B=1
0+1===>Carry=0,Sum=1

When A=1and B=0
1+0===>Carry=0,Sum=1

When A=1land B=1
l+1===>Carry=1,Sum=0

The logic diagram, truth table and logic equations for SUM and CARRY are given in figure.
From the truth table (A, B and SUM), we find that an EX-OR can be used to produce the

SUM. From the truth table (A, B and CARRY), we find that an AND gate can be used to
produce the CARRY.

53

2.3 Full adder

When we add two bits, we may get a carry bit. Hence, an adder circuit needs to add three bits
(ie. two input bits A and B and one carry bit C). The logic circuit which adds three bits is
called Full adder. The truth table of full adder is given in table.

Inputs Outputs
A | B | C | CARRY | SUM
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A full adder can be implemented using two half adders and an OR gate as shown in the
figure.

A —> ——-> SUM
B —» FA
C—> —> CARRY

Figure : Block diagram

SUM
HA 1 HA2

e e i S

C

Figure : Block diagram of full adder using two half adders

The logic diagram and logic equations for SUM and CARRY are given in figure.

AL

~
_/

HA 2

54

Figure : Logic diagram

SUM=A@BDC
CARRY=A B+ (A@®B)C
The first Half adder HAL is used to add A and B. Its SUM output and C are added by the
second Half adder HA2. The SUM output of HA2 is the final SUM. The carry outputs of
HAL and HA2 are ORed to get the final CARRY output.
2.4 Half subtractor

Half subtractor subtracts one binary bit from another binary bit at a time. It has two inputs A
and B, and two outputs DIFFERENCE and BORROW.

A ——> — DIFFERENCE

HS
B —» > BORROW

Figure : Block diagram of half subtractor
As per the laws of binary subtraction, we get,

When A=0and B=0
0 - 0 ===> Borrow = 0, Difference =0

When A=0andB=1
0 - 1 ===> Borrow =1, Difference = 1

WhenA=1and B=0
1 -0 ===> Borrow = 0, Difference = 1

When A=landB=1
1-1===>Borrow = 0, Difference =0

The logic diagram, truth table and logic equations for DIFFERENCE and BORROW are

given in figure.

A

B jj : Difference=4 ® B
Dc > Borr T)

Figure : Logic diagram of half subtractor

|
w

55

Inputs Outputs

A B BORROW DIFFERENCE
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

DIFFERENCE = AB+AB=A&® B
BORROW = A B

From the truth table (A, B and DIFFERENCE), we find that an EX-OR gate can be used to
produce the DIFFERENCE. From the truth table (A, B and BORROW), we find that A’.B
will give the BORROW. Hence, a NOT gate and an AND gate are used to produce the
BORROW.

2.5 Full subtractor
When we subtract two bits, we may get a borrow bit. Hence, a subtractor circuit needs to

subtract three bits (ie. two input bits A and B and one borrow bit C). The logic circuit which
subtracts three bits is called Full subtractor. The truth table of full subtractor is given in table.

A—> > DIFFERENCE
B—> FS
cC—> ———> BORROW

Figure : Block diagram of full subtractor

Inputs Outputs
A | B | C | BORROW | DIFFERENCE
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

A full subtractor can be implemented using two half subtractors and an OR gate as shown in
the figure.

DIFFERENCE DIFFERENCE

DIFFERENCE

HS 1 BORROW HS 2 Borrow

BORROW

56

Figure : Block diagram of full subtractor using two half subtractors

The logic diagram and logic equations for DIFFERENCE and BORROW are given in figure.

i > DIFFERENCE

HS 2

©]

Figure : Logic diagram of full subtractor

whly

DIFFERENCE=A@®B® C
BORROW=A4 B+ (4 @ B)C

The first Halfsubtractor HS1 is used for (A - B). Then C is subtracted from (A-B) using the
second Half subtractor HS 2. The DIFFERENCE output of HA2 is the final DIFFERENCE.
The BORROW outputs of HS1 and HS2 are ORed to get the final BORROW output.

2.6Parallel Adder

Parallel adders are digital circuits that add ‘n’ bits in parallel. The symbol and logic diagram
of parallel adder are shown in Figure.

TC‘ out
A 1 Igits
. Z urms S

TC‘ n

Figure : Symbol of Parallel adder

B nbits

Ys X3 Ya Xa Y1 % Yo ¥o
‘v +4 v+ 44
C3 C2 Cy o
r FA w— FA — FA &— FA —
A T Sl el
Sq S, S, Sg

Figure : Logic diagram of Parallel adder

57

It is constructed by cascading full adders one after another. Each full adder stage is
responsible for the addition of two binary digits and carry from the previous stage. The
carryout of one stage is fed directly to the carry-in of the next stage. Xsx>X1Xo and yzy,y1Yo are
the data inputs, ¢ is the carry input, s3S,51S IS the sum output and c4 is the carry output.

The augend’s bits of ‘X’ are added to the addend bits of ‘y’ respectively of their binary
position. Each bit addition creates a sum Sy, S1, Sz, Ssand a carry out ¢y, Cy, C3, C4. The carry out
is then transmitted to the carry in of the next stage. The final result creates a sum of four bits
$35251Splus a carry out ca.

2.7 Serial adder

Parallel adders are digital circuits that add ‘n’ bits in serial, ie., one bit at a time. The logic
diagram of serial adder is shown in Figure.

_ - 0 Sum
Shift)rbe\glster > g Fu - » Shift register
- Adder o C
. A
Cin
- - Q :
Shift register | | D
B FF
CLK
Cloc A

Figure : Logic diagram of Serial adder

The shift register (right shift) A holds the augend bits (first numer) and shift register B holds
the addend bits (second number), after addition, the result will be avaialble in shift register C.
All the shift registers are right shift registers.The full adder performs the bit by bit addition.
The D-flip-flop is used to store the carry output generated after addition.

Initially, the D-flip-flip is cleared and addition starts with the least significant bits (LSBs) of
both shift registers. After each clock pulse, data within the shift registers A and B are shifted
right by 1-bit. The full adder adds the bits along with the carry of the previous state (from the
D flip-flop) and the sum is stored in the output shift register C.

2.8 BCD adder

A BCD adder is a circuit that adds two BCD digits and produces a sum digit in BCD format.
BCD numbers use 10 digits, 0 to 9 which are represented in the binary form 0000 to 1001,
(i.e.) each BCD digit is represented as a 4-bit binary number.

For adding two BCD numbers, the following procedure should be followed:

1. Add two BCD numbers using ordinary binary addition.

2. If the 4-bit sum is equal to or less than 9, no correction is needed. The sum is in proper
BCD form.

58

3. If the 4-bit sum is greater than 9 or if a carry is generated from the 4-bit sum, the sum is
invalid.

4. To correct the invalid sum, add 0110, (ie. decimal 6) to the 4-bit sum. If a carry results
from this addition, add it to the next higher-order BCD digit.

Thus to implement BCD adder we require:
e A 4-bit binary adder for initial addition

e Logic circuit to detect sum greater than 9 and
e One more 4-bit adder to add 0110, if the sum is greater than O or carry is 1.

Figure shows the logic diagram of a BCD adder.

Addend Augend
bl b
Cout—1— 4-bit Binary iali:ld;,r " Cin

p
= !

Qutput '
Carry L $

l:l I£i1(R N

Cout «—— 4-hil Binary Adder

(ignored) l l l l

S8S5

Figure : BCD adder
Output Carry = S1.S3 + S,.53 + Coyt

As shown in Figure, the two BCD numbers, together with input carry, are first added in the
top 4-bit binary adder to produce a binary sum. When the output carry is equal to zero (i.e.
when sum <=9 and Cout=0) nothing (zero) is added to the binary sum. When it is equal to
one (i.e. when sum>9 or Cout=1), binary 0110 is added to the binary sum through the bottom
4-bit binary adder. The output carry generated from the bottom binary adder can be ignored.

59

29 Encoder

An encoder is a code converter circuit which is used to convert an active input signal to a
coded output signal. This is shown in figure. It should be noted that encoders have more
number of input lines and less number of output lines.

f —>
—>
—>

n inputs >

< ENCODER

\ ——

)
—
S —

> m outputs

)

There are ‘n’ input signals, only one of which is active. The encoder circuit converts this
active input to ‘m’ bit coded output (n > m). Decimal to BCD converter is a good example for

encoder.

Decimal to BCD encoder

The logic diagram of Decimal to BCD encoder is shown in figure.

+5V

X

A R

C

D

There are 10 input switches corresponding to ten decimal numbers 0, 1, 2, 3, 4, 5, 6, 7, 8 and
9. The BCD outputs are taken from the OR gates. When any one of the input switches is
pressed, the corresponding output will be generated in BCD form. The truth table is shown in

figure.

60

Decimal input BCD outputs

switch pressed A B C D
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

For example, when switch ‘3’ is pressed, only the OR gates C and D get high input, and
hence the output ABCD will be 0011. Similarly when switch ‘9’ is pressed, only the OR
gates A and D get high input and the output will be 1001.

The Decimal to BCD encoder is also available in IC form. The IC number is 74147. It has 16
pins.

2.10 Decoder
Decoder is a logic circuit which converts binary data in one coded form to another coded

form. Decoders have less number of input lines and more number of output lines. Decoders
have no data input but they have only control inputs.

m control inputs

——
5 \
DECODER > n outputs
)

The control input lines are also called address lines. Any one of the output lines will be
enabled depends upon the selection made in the address lines.

3-to-8 Decoder
The 3-t0-8 decoder has eight output lines and three control input lines. Any one of the output

will go high (ie. logic ‘1”) depends on the conditions of the control lines. It is also called 1 of
8 decoder. The logic diagram and truth table of 3-to8 decoder are given in figure.

61

(MSB) (LSB)

%7— ’ B - A °
C
o\ Y,=CBA
¢ |/
1 1\ Y,=CBA
0 =
! |/
L ? _2\ Y,=CBA
¢ |
. ? 3 Y,=CBA
. ? (D) v.-cEeA
* |/
? _5\ Y,=CBA
* |
! _6\ Y,=CBA
¢ |/
D Y,=CBA
Control Input Output
C B | A | Y| Y| Ys | Yol VY] Y. Y] Yo
0] 0| 0] o] oo]]o] oo o] 1
0] 0| 1]o0o]o o]]o]o]o]1]o0
0] 1 |0 o] oo o] o] 1]o0]o
0 | 1 | 1]o0o] oo]o]| 1o o0/ o
1 000] oo]| 1o o] o0o]o
1] 0| 1] 0] o] 1]0]o0]o0]o0o]o
1 | 1] 0] 0] 1]o0]o] oo oo
1 | 1 | 1] 1]0]o0o]o] oo oo

In the logic diagram, the AND gates are numbered from 0 to 9. When the control input lines

CBA are 000, all the inputs CBA of 0™ AND gate are 1. Hence, Y, will be ‘1°. But all other
AND gates will have at least one input as ‘0’. Hence, their outputs are ‘0’. When the control

input lines CBA are 001, all the inputs CBA of 1* AND gate are 1. Hence, Y1 will be 1°. But
all other AND gates will have atleast one input as ‘0’. Hence, their outputs are ‘0’.

Similarly, the outputs for all other control input combinations can be found. The 3-to-8
decoder is available in IC form also. The IC number is 74138.

62

2.11 BCD to seven segment decoder

A 7-segment display is shown in figure. It has seven flat LEDs arranged in such a way to
display decimal numbers from 0 to 9 and other symbols. The segments are labeled as a, b, c,
d, e, fand g. When LED segments a, b, ¢, d and g are ON, we get the number 3 as shown in
figure. The display patterns for numbers from0 to 9 are shown in figure.

Figure : 7-segment display showing decimal number 3

= |}

0 1 2 3 4 5 6 7

Figure : Display pattern for decimal numbers

A —» ———» a
——>» Db
B—— > > ¢
BCD BCD 7
Ut to > d -segment
P 7-segment outputs
C » decoder » €
—» f
D——» > g

Figure : Block diagram of BCD to Seven segment decoder

BCD to 7-segment decoder is a logic circuit which converts the BCD (4 bits) code to 7-
segment display code (7 bits). The functional diagram and truth table are shown in figure.

63

° |

- Bé:D inr():ut . - - 7-segme(;1t out[()aut - 5 Display
ojojo o |11]1|1]1]1]0 :::
ojo|o0o|1]0|212|1]0]|O0]|O0]|O :
o|lo|1|0 |11 0|1|1]0]1 E'
oo | 1|11 |1]1|[1]0]0]|1 E:
o|l1]0|0|0 |11 |0|0]1]1 '-:
o101 |1]o0o|1]1]0/|1]1 ':l
o110 1|0 |1 |1 |1]1]1 :E|
ol 1|11 |11 |1|0|0]|]0]0O '-=
1] o0flo0]0 21|11 |21]1]|1]|1 E:
1ol o | 1|11 |1]|1]0]1]1 E:

Figure : Truth table of BCD to Seven segment decoder

From the truth table, we can find the logic equations for the outputs.

a=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
b=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
c=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABC
D
d =ZABCD+ABCD+ABCD+A BCD+A BCD+ABCD+ABCD
e =ZABCD+ABCD+A BCD+ABCD
f=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
g=ABCD+ABCD+ABCD+ABCD+A BCD+ABCD+ABCD

By simplifying the above equations using K-map, we get the following simplified logic
equations for the seven segments :

a=A+C+BD+BD

b=B+CD+CD

c=B+C+D

d=BD+BC+BCD+A

e=BD+CD

f=A+CD+BC+BD

64

g=A+BC+BC+CD

From the above equations, we can draw the logic diagram for all the outputs. NOT gates are
used for complements, AND gates are used for . operations and OR gates are used for ‘+’
operations. Hence, for segment ‘a’ we need two 2-input AND gates and one 4-input OR gate.
The final logic diagram for the BCD to 7-segment decoder is shown in figure.

vl v vl v
? L ¢ f e — a
- D—
L] ——
‘ :)
l ¢ —
' ==
¢ ‘_D_I —
'S ‘ 5 5 _Q
! — 1
| @ .__)_, :D_
e .__>
[¢ e
@ T |
O I D »
o —

Figure :Logic diagram of BCD to 7-segment decoder

65

BCD to 7-segment display decoder logic is available in IC form also. IC 7447 is used for
common anode displays and IC 7448 is used for common cathode displays.

2.12 Multiplexer (MUX)

Multiplex means ‘many to one’. A multiplexer is a logic circuit with many inputs and only
one output. We can select from any one of the data inputs to the output by using the control
input signals. Multiplexer is also called ‘data selector’ and the control inputs are called

‘select’ inputs.

m select inputs

T

L

5| MULTIPLEXER > output

n data
inputs

If there are ‘m’ select lines, we can have a maximum of 2™ data input lines. Hence, n < 2™,
2-to-1 Multiplexer
In a 2-to-1 multiplexer, there are 2 data input lines (DO, D1) and one output line (Y). We

need at least 1 select line (A) to select any one of the 2 inputs to the output line. The logic
diagram, truth table and logic equation of 2-to-1 multiplexer are shown in figure.

DO

D1

Figure : Logic diagram of 2-to-1 multiplexer

Select line Output
A Y
0 Dy
1 D,

Figure : Truth table of 2-to-1 multiplexer
Y =ADy+AD;
When A = 0, the first AND gate is enabled. Hence, the input Do (0 or 1) will be available at
the output. When A = 1, the second AND gate is enabled and the output Y will be D;.
IC 74157 is quad 2-to-1 multiplexer. It has four sets of 2-to-1 multiplexer in a single package.
There are 16 pins in this IC.

66

4-to-1 Multiplexer

In a 4-to-1 multiplexer, there are 4 data input lines and one output line. We need at least 2
select lines to select any one of the 4 inputs to the output line. The logic diagram, truth table
and logic equation of 4-to-1 multiplexer are shown in figure.

A B
D0 7T\ AN
D TN\ h\
1 [R
D2 Van® T
D3 7T\ 7\

Figure : Logic diagram of 4-to-1 multiplexer

Select lines Output
A B Y
0 0 Do
0 1 D,
1 0 D,
1 1 Ds

Figure : Truth table of 4-to-1 multiplexer
Y=ABDy+ABD;+ABD,+ABD;s

When A = 0 and B = 0, the first AND gate is enabled. Hence, the input Do (0 or 1) will be
available at the output. When A = 0 and B = 1, the second AND gate is enabled and the
output Y will be D;. When A =1 and B =0, we will get D, at the output. Similarly, Y = D3
when A=1and B =1.

IC 74153 is a dual 4-to-1 multiplexer. It has two sets of 4-to-1 multiplexer in a single
package. There are 16 pins in this IC.

8-to-1 Multiplexer
In a8-to-1 multiplexer, there are 8 data input lines and one output line. We need at least 3

select lines to select any one of the 8 inputs to the output line. The logic diagram, truth table
and logic equation of 8-to-1 multiplexer are shown in figure.

67

B —

»-
°s -

-

>
p-dl
w
joy]]
O
Ol

{>0-
>o-

Figure : Logic diagram of 8-to-1 multiplexer

Select lines Output

(o8]

= =l{=1{=1p

=l =l =l =1e]
@)
w

P[P OOk Ik, OO

Figure : Truth table of 8-to-1 multiplexer

Y=ABCDy+ABCD;+ABCD,+ABCD3;+ABCD,+ABCDs+ABCDg+ABC
Dy

When A =0, B=0and C =0, the first AND gate is enabled. Hence, the input D (0 or 1) will
be available at the output. When A = 1, B =1 and C = 1, the last (eighth) AND gate is
enabled and the output Y will be D;. Similarly, the output is D2, D3, D4, D5 and D6 when
the inputs ABC are 001, 010, 011, 100, 101 and 110 respectively. IC 74151 is the 8-to-1
multiplexer. There are 16 pins in this IC.

68

Applications of MUX
Multiplexers are used to implement combinational logic functions.

The function F (4,B,C) = Ym (1, 3,5, 6) can be implemented using an 8-1 multiplexer, as
shown in figure.

1 0
0
1
2
3 811 |y
4 MUX
5
6
7
S1 S S3
A |
B
C

The variables A, B and C are applied to the select lines. The minterms to be included (1, 3, 5
and 6) are chosen and their corresponding input lines are connected to 1 (Vcc). The
remaining input lies (0, 2, 4 and 7) are connected to 0 (GND). When the select lines ABC are
000, the input line O is selected and we get O at the output because the input line O is
connected to GND. Similarly, when the select lines ABC are 101, the input line 5 is selected
and we get 1 at the output because the input line 5 is connected to Vcc.

2.13 Demultiplexer (DEMUX)

Demultiplex means ‘one to many’. A demultiplexer is a logic circuit with only one input and
many outputs. We can send the data input to any one of the outputs by using the control input
signals. Demultiplexer is also called ‘data distributer’.

m select inputs

/-/\‘\

L

input ——>» DE-MULTIPLEXER ——>

n outputs

Figure :Demultiplexer

If there are ‘m’ select lines, we can have a maximum of 2™ output lines. Hence, n <2™.

69

1-to-2Demultiplexer

In a 1-to-2demultiplexer, there are 1 data input line and 2 output lines. We need at least 1
select line to select the output line. The logic diagram, truth table and logic equations of 1-to-

2demultiplexer are shown in figure.

D

-]

Figure : Logic diagram of 1-to-2demultiplexer

D—YB
D—Yl

Select lines Outputs
A Y, Yo
0 0 D
1 D 0

Figure : Truth table of 1-to-2demultiplexer

Yo=AD

Y1

When A = 0, the first AND gate is enabled. Hence, the input D (0 or 1) will be available at
the output Yo. When A = 1, the second AND gate is enabled and the output Y;will get the

input D.

1-to-4 Demultiplexer

In a 1-to-4 demultiplexer, there are 1 data input line and 4 output lines. We need at least 2
select lines to select the output line. The logic diagram, truth table and logic equations of 1-

to-4 demultiplexer are shown in figure.
A B

=AD

LT

Y

I

Figure : Logic diagram of 1-to-4 demultiplexer

70

1 \

[4

1 \

o1

‘ 1| \
o—_

| \

—i

YO0

Y1

Y3

Select lines Outputs

A B Ys Y, | Yy Yo
0 0 0 0 0 D
0 1 0 0 D 0

1 0 0 D 0 0

1 1 D 0 0 0

Figure : Truth table of 1-to-4 demultiplexer

Yo=AB D
Y.=ABD
Y,=ABD
Y;=ABD

When A = 0 and B = 0, the first AND gate is enabled. Hence, the input D (0 or 1) will be
available at the output Yo. When A = 0 and B = 1, the second AND gate is enabled and the
output Y;will get the input D. When A = 1 and B = 0, we will get D at the output Y.
Similarly, Y;=Dwhen A=1and B = 1.

IC 74139 is a dual 1-to-4 demultiplexer. It has two sets of 1-to-4 demultiplexer in a single
package. There are 16 pins in this IC.

1-to-8 Demultiplexer

In a 1-to-8demultiplexer, there are 1 data input line and 8 output lines. We need at least 3
select lines to select the output line. The logic diagram, truth table and logic equations of 1-
to-8demultiplexer are shown in figure.

D A B C

EREERE
YIYIY

o]
=)

o]
—

]
&)

-
w

o]
tn

o)
=N

T

o]
—~i

Figure : Logic diagram of 1-to-8demultiplexer

71

Select lines Outputs
A B C Y- Yo | Ys | Yy Y3 Y, Y, Yo
0 0 0 0 0 0 0 0 0 0 D
0 0 1 0 0 0 0 0 0 D 0
0 1 0 0 0 0 0 0 D 0 0
0 1 1 0 0 0 0 D 0 0 0
1 0 0 0 0 0 D 0 0 0 0
1 0 1 0 0 D 0 0 0 0 0
1 1 0 0 D 0 0 0 0 0 0
1 1 1 D 0 0 0 0 0 0 0

Figure : Truth table of 1-to-8demultiplexer

Yo=ABC D
Y.=AB CD
Y,=ABCD
Y;=ABCD
Y,=ABCD
Ys=ABCD
Ye=ABCD
Y;=ABCD

When A =0, B =0 and C =0, the first AND gate is enabled. Hence, the input D (0 or 1) will
be available at the output Yo. When A =1, B =1 and C = 1, the last (eighth) AND gate is
enabled and the input D will be available at the output Y7.Similarly, the input D can reach Y7,
Y2, Y3, Y4, Ys and Y when the control inputs ABC are 001, 010, 011, 100, 101 and 110
respectively. IC 74138 is the 1-to-8demultiplexer. There are 16 pins in this IC.

2.14 Parity generator and checker

The most common error detection code used is the parity bit. A parity bit is an extra bit
included with a binary message to make the total number of 1's either odd or even. In case of
even parity, the parity bit is chosen so that the total number of 1's in the coded message is
even including the parity bit. Alternatively, odd parity can be used in which the total number
of 1's in the coded message is made odd including the parity bit.

- B i T

ne1 - Noisy Parity

—*.__ transmission-., — heck
media checker

- “e——t A

n-bit __{ Parity
data Generator

During transfer of information, the message at the sending-end is applied to a parity generator
where the parity bit is generated. At the receiving end a parity checker is used to detect single
bit error in the received data.

72

Even parity generator

In an even parity system, the number of ones in data bits including the parity bit must be an
even number. For example, the even parity bit for the data bits 0101 must be 0 because we
must have an even number of ones in the data bits including the parity bit. EX-OR gates are
used in parity generator and checker circuits. A 4-bit even parity generator circuit, its truth
table and logic equation are shown in figure.

(D, :)
D2 o
Data bits) D—P Pariybi
D; :)
\ Do
Figure : Logic diagram of 4-bit Even parity generator
. Output
Data input (Even [:F)Jari ty)
D; D, D, Do P
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Figure : Truth table of 4-bit Even parity generator
P = Ds@® D2 D1 Do
The four data bits along with the parity bit D3D,D;DgP are transmitted to the receiver circuit.
Even parity Checker
An even-parity checker will produce an error (“1”) if the number of bits in the entire group of

digits including the parity bit is notan even number. A 4-bit even parity checker logic
diagram, truth table and its logic equation are given in figure.

73

Parity bit P

Bz jg:b D— E Error
Data bits D,
D,

Figure : Logic diagram of 4-bit Even parity checker

Parity bit

Data input Error Bit
Input
Ds D, D, Do P E
0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 0

Figure : Truth table

P = D3 D2 D1D Do®D P

When data bits matches with the parity bit, then the Error E is zero. If any one of the data bits
changes from 0 to 1 or 1 to O, then the Error bit E will be 1 indicating the Parity Error.
IC 74280 is a 9-bit Parity generator / checker.

©LOOOO

74

UNIT - 111

SEQUENTIAL CIRCUITS
Sequential Circuits

In sequential circuits, the output depends not only on the present input conditions but
also on the previous output conditions i.e. the past history of the inputs. The past history is
provided by the feedback from the output back to the input.

3.1 Flip-flops

The basic building block for sequential logic circuits is the flip-flop(FF). Flip-flop is a
bi-stable logic element with one or more inputs and two outputs. The outputs are complement
to each other. A flip-flop can store one bit of binary data ‘0” or ‘1°. Flip-flops are used in
counters, shift registers and memory devices. There are six types of flip-flops:

SR Flip-flop

Clocked SR flip-flop

JK flip-flop

JK Master Slave flip-flop
D flip-flop and

T flip-flop

oakrwdE

Flip-flop is a one bit memory cell. It can store one bit of information.
3.1.1 SR (or RS) flip-flop

It is also called Set/Reset flip-flop. The logic symbol of SR flip-flop is shown in
figure:

Set s Q Normal

SR
FF
Reset R a Complementary

Figure : Symbol of SR flip-flop

The SR flip-flop has two inputs and two outputs. The inputs are S (Set) and R (Reset).
The outputs Q and Q are complements to each other. i.e. when Q = 0, Q will be 1 and when Q

=1, Q will be 0. The logic diagram of SR flip-flop using NAND gates and the truth table are
shown in figure.

75

Figure : Logic diagram of SR flip-flop

SInputsR 5 Outputs = Condition

0 0 Previous | Previous No change
value value

0 1 0 1 Reset

1 0 1 0 Set

1 1 Forbidden Not used

Figure : Truth table of SR flip-flop
NAND gates 3 and 4 form the basic flip-flop circuit. The output of gate 3 (Q) is
connected as one of the input to gate 4. Similarly, the output of gate 4 (Q) is connected as one
of the input to gate 3. This feedback type of connection is called cross coupled connection.
NAND gates 1 and 2 are used as NOT gates for complementing S and R.

When S=1 and R=1, the outputs Q and Q will not change and the previous values are
retained. When S=0 and R=1, the output Q will become 0 and Q will become 1. This
condition is called RESET condition. i.e. the output Q is reset to zero. When S=1 and R=0,

the output Q will become 1 and Q will become 0. This condition is called SET condition. i.e.
the output Q is set to ONE.

But, when S=1 and R=1, both the outputs Q and Q will become 1. This is not allowed

in digital circuits because the outputs Q and Q are complement to each other. Hence, this
state is called forbidden state and we should not use the SR flip-flop with S=R=1.

3.1.2 Clocked SR (CSR) flip-flop

Normally, sequential logic circuits work in sequence with on the occurrence of clock
signal. Clock signal is a train of pulses in the form of square wave. Clocked SR flip-flop is
similar to SR flip-flop with an additional clock input. The output of the FF changes only on
the arrival of the clock signal. The logic symbol, logic circuit diagram and truth table of CSR
FF are shown in figure.

Set s Q Normal
Clock CSR
FF
Reset R a Complementary

Figure : Logic symbol of CSR FF

76

Figure : Logic circuit of CSR flip-flop

Inputs Outputs .
CLK S R Q a Condition
Previous | Previous
JL 0 0 value value No change
[0 1 0 1 Reset
I 1 0 1 0 Set
[1 1 Forbidden Not used

Figure : Truth table of CSR flip-flop

The inputs S and R will be allowed to enter the circuit only when the CLK input is
present i.e. at logic ‘1°. When there is no clock pulse (i.e. at logic ‘0”), the flip-flop will retain
the previous state. The operation of CSR flip-flop is similar to SR flip-flop when the clock
signal is ‘1°.

3.1.3 JK Flip-flop

The NOT USED condition of SRFF i.e. S=1, R=1 condition is eliminated in the JK
flip-flop. The condition J=1, K=1 is used to toggle the flip-flop. Toggling means, when the
previous output is ‘0’, the present output will be ‘1°. Similarly, when the previous output is
‘1°, the present output will be’0’.

JK FF has three inputs J, K and CLK and two outputs Q and Q. Preset (Pr) and Clear
(Cr) inputs are also provided in the JK FF. The logic symbol, logic circuit diagram and truth
table of JK FF are shown in figure.
IPr

Jo—— ——oQ
JK
Clko— FF
Ko—— ——o0Q

Lo

Figure : Logic symbol of JK FF

77

CLK |

Q
Ko——B’T—“
Cr

Figure : Logic circuit diagram of JK FF

Ql

— Ianuts - 5 Outputs 5 Condition
Previous Previous

L[| O 0 value value No change

JL 0 1 0 1 Reset

JL] 1 0 1 0 Set
Complement | Complement

L | 1 1 of Previous | of Previous Toggle

value value

Figure : Truth table of JK FF

When J=0 and K=0, there will be no change in the output. Q and Q will retain the
previous state. When J=0 & K = 1 and CLK = 1, Q will become ‘0’ and Q will become 1°,
This condition is called RESET condition. WhenJ=1 & K=0and CLK =1, Q will become
‘1’ and Qwill become 0°. This condition is called SET condition. When J =1 and K =1, the
output will toggle repeatedly on the arrival of the successive clock signal.

The PRESET and CLEAR inputs are used to set and clear the FF irrespective of the
application of clock pulse. The bubbles shown in Pr and Cr inputs represent the active low
inputs. That means the signal is active when it is ‘0’. The FF will SET when Pr = 0 and
CLEAR when Cr =0.

Racing problem

In JK flip-flop, when J = 1, K = 1 and when the clock pulse duration is more, the FF
will toggle many times (more than one time). Hence, we cannot estimate the final output.

78

Level

Positive edge l, Negative edge

¥ :

Duration of the clock

This problem in JK FF is called racing problem and this condition is called race-
around condition. The racing problem can be avoided by using JK Master Slave (JK MS)
flip-flop or by using edge triggering techniques.

3.1.4 JK Master Slave (JKMS) flip-flop

The racing problem in JK FF can be avoided by using JKMS FF. The logic symbol of
JKMS FF is show in figure.
IPr

Jo——— ———o0Q
Clk JKMS
FF

Ko— —o0Qq

Lo

Figure : Logic symbol of JKMS FF

In JKMS FF there are two JKFFs, one Master JKFF and one Slave JKFF. The CLK
pulse of the master section is inverted and then given to the CLK input of the slave section.

G

Jo——, Q J Q——oQ
Master Slave
Clk o ck JK ck JK
FF FF
o) _
Ko K Q K Q o Q

____ﬁ_t>r_»4447 iCr
Figure : JKMS FF using two JK FF

The logic circuit diagram and truth table of JKMS FF are shown in figure.

79

J &——

CLK {
o~ 4

K&

|

Figure : Logic circuit diagram of JKMS FF

Tﬁ Master Slave

Inputs Outputs .
CLK 3 K Q] Condition
J_t 0 Previous Previous No change
value value
Ty | o] 1 0 1 Reset
JTY | 1|0 1 0 Set
Complement | Complement
JIY |1 1 | of Previous | of Previous | Toggle
value value

Figure : Truth table of JKMS FF

NAND gates 1, 2, 3 and 4 form the Master section and NAND gates 5, 6, 7 and 8
form the slave section. NOT gate is used to generate the inverted clock for the slave section.

When CLK = 1, the Master section in enabled and the outputs Qy and Qw respond to
the inputs J and K. At this time, the Slave section is inhibited (not enabled) because the CLK
to the slave section is 0. When CLK goes LOW, the Master section is inhibited and the Slave
section is enabled, because its CLK input is HIGH. Therefore, the outputs Q and Q follow Qwm

and Qv respectively. Hence, the slave section follows the master section.

The input to the gates 3 and 4 do not change during the clock pulse, therefore the
race-around condition does not exist. The state of the JKMS FF changes at the negative
transition (trailing edge) of the clock pulse. The Pr and Cr inputs are used to SET and
CLEAR the FF irrespective of the clock input.

80

3.1.5 T Flip-flop

The T (Toggle) Flip-flop is formed by connecting the J and K inputs of JKMS FF
together. (or) In a JKMS FF, when we make J = K, we will get a T FF. This is shown in

figure.
IPr

To J Q——oQ

JKMS
Clko FE

K Q————°Q

lor

Figure : Logic diagram of T FF

The truth table of T FF is shown in figure.

CLIQpUtS T Q Outputs 0 Condition
J—t Previous Previous
value value

Complement | Complement

| t 1 | of Previous | of Previous Toggle

value value

No change

Figure : Truth table of T FF

The T FF has only one input, called T input. When T =1 (J =1 and K = 1), the output
Q toggles i.e. the complement of the previous output. When T =0 (J = 0 and K = 0), the
output will remain unchanged. Pr and Cr inputs are used to SET and CLEAR the FF
irrespective of the clock signal.

T FF is also called ‘divide by 2’ counter because the output signal frequency is half of
the clock signal frequency.

3.1.6 D Flip-flop

In a JK FF, when K is the complement of J by connecting a NOT gate between them

(K =), we will get the D flip-flop. D FF has only one input D and two outputs Q and Q. The
logic circuit and truth table of D FF are shown the figure.

81

o
Pr

8]
Do J Q oQ
JKMS
Clk o o FE
| K] °Q
(8]
aCr
Figure : Logic diagram of D FF
Inputs Outputs .
P P — Condition
CLK | D Q 0
| t 0 1 Reset
| t 1 1 0 Set

Figure : Truth table of D FF

When D = 0, J will become 0 and K will become 1, and after the clock pulse is

arrived, the output will be in RESET condition i.e. Q = 0 and Q = 1. When D = 1, J will
become 1 and K will become 0, and after the clock pulse is arrived, the output will be in SET

condition i.e. Q = 1 and Q = 0. It is clear that the FF stores the input value D.

D FF is called Data FF because this flip-flop can be used to store one bit. D FF is also
called Delay FF because the input is transferred to the output only after the arrival of the
clock pulse. . Pr and Cr inputs are used to SET and CLEAR the FF irrespective of the clock
signal.

3.1.7 Triggering of Flip-flop

The condition of the output changes from one state to another is called triggering. The
triggering is happening in FFs only due to the clock pulse. Basically there are two types of
triggering the flip-flop using clock signal:

1 Level triggering
2 Edge triggering

Level

Positive edge \L Negative edge

j: \% N \% 0 \% N \%

Duration of the clock

Figure : Clock pulse

82

Level triggering

In this triggering, the output of the FF changes during the presence of the clock signal.

When the inputs to the FF change during the presence of the clock pulse, uncertainty
in the output occurs. This problem can be avoided by using Master-Slave FFs or edge
triggered FFs.

Edge triggering

There are two types of edge triggering:

1. Positive edge triggering
2. Negative edge triggering

G

Jo— Q—oQ
JK

Clko—— FF

K o——K a———oq

e

Figure : Positive edge triggered FF

o)
Jo J Q o Q
Cko— B> JK
> FF
Ko K Q °Q
L —
oCr

Figure : Negative edge triggered FF

In Positive edge triggering, the output of the FF changes only during the positive edge
(leading edge) of the clock pulse. In negative edge triggering, the output of the FF changes
only during the negative edge (trailing edge) of the clock pulse. The type of triggering of FF
is represented in the clock input as shown in figure.

83

3.2 Counters
The most important sequential circuits used in digital systems are

1) Counters and
2) Registers

A sequential logic circuit used for counting the number of pulses is known as a
counter. Counters are also used for measuring time and frequency.Flip-flops are the basic
elements used for designing the counter circuits. Basically there are two types of counters.
They are,

1. Asynchronous counter
2. Synchronous counter

3.2.1 Asynchronous counter

The asynchronous counter (ripple counter) is simple and straightforward in operation
and construction and requires minimum hardware. These counters are slow in operation. Each
flip-flop is triggered by the previous flip-flop and hence the counter has a cumulative settling
time. i.e. the flip-flops are connected in serial and hence these counters are also called serial
counters. In this type of counters, the triggers move through the flip-flop like a ripple in
water. Hence, these counters are also known as ripple counters.

3.2.1.1 Four bit binary asynchronous (ripple)UP counter

The logic diagram of 4-bit binary asynchronous UP counter is shown in figure. The
UP counter counts from 0000 to 1111.

{Q JKMS J +—{Q JKMS Clock
T FF _ | FF A Input
:"\P UK _P—1 °
a ® kf— a ™ «t
. O O
¥V Cr Cr

) i i ¢ ' ¢ Reset
| s o T

Figure :Four bit binary asynchronous (ripple) UP counter

Four negative edge triggered JKMS flip-flops are used in this counter. J and K inputs
of all the FFs are connected to +5v (J =1, K = 1). This makes the FFs to operate as T (Toggle)
flip-flop. The T FF changes its state (i.e. from 0 to 1 or 1 to O) for every input clock pulse.
The clock input is applied to the first flip-flop A. The Q output of the FF A is given as clock
input to the second flip-flop B. The Q output of FF B is given as clock input to the third flip-
flop C. The Q output of flip-flop C is given as clock input to the forth flip-flop D. The Q
output of all the flip-flops are taken as the counter outputs DCBA. The output A is called the

84

Least Significant Bit (LSB) and the output D is called the Most Significant Bit (MSB). The
CLEAR (Cr) input of all the FFs are connected to ground through the Master Reset switch.

When the Master Reset switch is pressed, all the FFs are cleared and the counter
output DCBA is 0000. During the negative edge of the first clock pulse, FF A will be toggled
i.e. the output A changes from 0 to 1. At this time, the outputs of all other flip-flops will not
change.Hence, the counter output DCBA is 0001.

Input Output

Clock | D C B A

Reset 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
16 0 0 0 0

5 2
L

During the application of the second clock pulse, FF A will be toggled once again
from 1 to 0. This will give a negative edge triggering pulse to FF B and hence FF B also
toggles from 0 to 1. The counter output DCBA will become 0010.

85

Similarly, FF C will toggle when the output of FF B toggles from 1 to 0 and FF D will
toggle when the output of FF C toggles from 1 to 0. It should be noted that FF A toggles for
every clock pulse, FF B toggles for every two clock pulses, FF C toggles for every 4 clock
pulses and FF D toggles for every eight clock pulses. The frequency of output A is % of the
clock frequency, output B is ¥ of clock, output C is 1/8 of clock and output D is 1/16 of
clock frequency. Hence, the four bit counter acts as a ‘divided by 16’ counter.

For the 15" clock pulse, the output is 1111. When the next (16"™) clock pulse is
applied, all the flip-flops will toggle from 1 to O at the same time and hence the output is
0000.The outputs of the counter during the application of each clock pulse are shown in the
truth table and also in the waveforms.
3.2.1.2 Four bit binary asynchronous (ripple) DOWN counter

The logic diagram of 4-bit binary asynchronous DOWN counter is shown in figure.
The DOWN counter counts from 1111 to 0000.

oD MSB oC o8B oA LSB

+Q JkMS J e 1Q JKMS j|— Clock
FF - FF] | input
CL 5 M;‘:b 'p

+5V Cr Cr
- ‘ . . 1 ® | ¢ Reset
o © o o *]

Figure :Four bit binary asynchronous (ripple) DOWN counter

Four negative edge triggered JKMS flip-flops are used in this counter. J and K inputs
of all the FFs are connected to +5v (J =1, K = 1). This makes the FFs to operate as T (Toggle)
flip-flop. The T FF changes its state (i.e. from 0 to 1 or 1 to 0) for every input clock pulse.

The clock input is applied to the first flip-flop A. The Q output of the FF A is given as clock
input to the second flip-flop B. The Q output of FF B is given as clock input to the third flip-

flop C. The Q output of flip-flop C is given as clock input to the fourth flip-flop D. The Q
output of all the flip-flops are taken as the counter outputs DCBA. The output A is called the
Least Significant Bit LSB) and the output D is called the Most Significant Bit (MSB). The
CLEAR (Cr) input of all the FFs are connected to ground through the Master Reset switch.

When the Master Reset switch is pressed, all the FFs are cleared and the counter
output DCBA is 0000. During the negative edge of the first clock pulse, FF A will be toggled
i.e. the Q output of A changes from 0 to 1 and Q output of A changes from 1 to 0. Hence,

flip-flop B also toggles. Similarly flip-flops C and D also toggle. Hence, the counter output
DCBA is 1111.

86

Input Output

Clock | D C B A

Reset 0 0 0 0
1 1 1 1 1
2 1 1 1 0
3 1 1 0 1
4 1 1 0 0
5 1 0 1 1
6 1 0 1 0
7 1 0 0 1
8 1 0 0 0
9 0 1 1 1
10 0 1 1 0
11 0 1 0 1
12 0 1 0 0
13 0 0 1 1
14 0 0 1 0
15 0 0 0 1
16 0 0 0 0

o [s A s Y s (Y s (Y s Y s (N o O
N S (N S B S Y S
B

o4 | f |

] |

During the application of the second clock pulse, the Q output of FF A will toggled

once again from 1 to 0 and Q from 0 to 1. Hence, FF B will not toggle this time. The counter
output DCBA will become 1110.

During the third clock pulse, the Q output of FF A will toggle once again from 0 to 1
and Q from 1 to 0. Hence, FF B will toggle this time. The counter output DCBA will become
1101. Similarly, FF C will toggle when the Q output of FF B toggles from 1 to 0 and FF D
will toggle when the Q output of FF C toggles from 1 to 0. It should be noted that FF A
toggles for every clock pulse, FF B toggles for every two clock pulses, FF C toggles for every
4 clock pulses and FF D toggles for every eight clock pulses. The frequency of output A is %2
of the clock frequency, output B is ¥ of clock, output C is 1/8 of clock and output D is 1/16
of clock frequency. Hence, the four bit counter acts as a ‘divided by 16” counter.The outputs
of the counter during the application of each clock pulse are shown in the truth tableand also
in the waveforms.

87

3.2.1.3 Four bit binary asynchronous (ripple) UP / DOWN counter

The logic circuit diagram of 4-bit binary asynchronous UP / DOWN counter is shown
in figure.

MSB C B A LSB

1) D ° T T Count UP
Q jkms J e ks ‘»] ‘LIQ JKMS J — J \]J»o KNS |
FF o—{ Cd FF /}> —C FF (‘LK\ b .
s CLK 1/' '_ f\ CLK 1‘/' 6 . CLK L —
a @ «k = ©) K B) Kt] Q K
o C o) Cqunt DOWN
+5V Cr Cr) Cr Cr ®

© o -o.

Reset

Figure :Four bit binary asynchronous (ripple) UP / DOWN counter

We know that in UP counter, the Q output of each flip-flop is given as clock input for
the next FF. For the DOWN counter, the Q output each flip-flop is given as clock input for

the next FF. A combinational circuit using AND and OR gates is used to select the Q or Q
output. When the COUNT UP line is made 1, the upper AND gate is enabled and Q will go
as clock input to the next FF. When the COUNT DOWN line is made 1, the lower AND gate

is enabled and Q will go as clock input to the next flip-flops.
3.2.2 Decade counter

The logic diagram of decade counter is shown in figure. It counts from 0 to 9 and at
the 10" clock pulse the counter will reset and starts counting again. The other name for
decade counter is Mod-10 counter.

oD C oB o

+—1Q ks J +—Q JKMS J +—Q JKMS j — Clock
FE FF input
FF -L-:--.. | < CLKL, b &
g \& K '— a B «k g) K
or o o
Cr Cr Cr pap
L 3 : 2 £ L 3
& o oo o - i
}_ Reset

Figure : Decade counter

The counter has to count from 0000 to 1001. Hence, four negative edge triggered
JKMS flip-flops are used in this counter. J and K inputs of all the FFs are connected to +5v (J
=1, K = 1). This makes the FFs to operate as T (Toggle) flip-flop. The T FF changes its state
(i.e. from 0 to 1 or 1 to 0) for every input clock pulse. The clock input is applied to the first

88

flip-flop A. The Q output of the FF A is given as clock input to the second flip-flop B. The Q
output of FF B is given as clock input to the third flip-flop C. The Q output of FF C is given
as clock input to the fourth flip-flop D. The Q output of all the flip-flops are taken as the
counter outputs DCBA. The output A is called the Least Significant Bit LSB) and the output
D is called the Most Significant Bit (MSB). The CLEAR (Cr) input of all the FFs are
connected to ground through the Master Reset switch.

We need to reset the counter at 10" clock pulse i.e. at DCBA = 1010. Hence, we have
to reset the counter when D = 1 and B = 1. The NAND gate is used to apply RESET signal.
The inputs for the NAND gate are taken from D and B.

Input Output
Clock | D C B A
Reset 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 0 0 0 0
11 0 0 0 1

Inpu

A R A R A
i | S }

. ¥

b L

When the Master Reset switch is pressed, all the FFs are cleared and the counter
output DCBA is 0000. During the negative edge of the first clock pulse, FF A will be toggled
i.e. the output A changes from 0 to 1. At this time, the outputs of all other flip-flops will not
change. Hence, the counter output DCBA is 0001. During the application of the second clock
pulse, FF A will be toggled once again from 1 to 0. This will give a negative edge triggering
pulse to FF B and hence FF B also toggles from 0 to 1. The counter output DCBA will
become 0010. Similarly the counting continues.

At the 10" clock pulse, the output DCBA will try to become 1010 (D = 1 and B = 1).
As the NAND gate inputs, D and B are 11, the 0 in the gate output RESET the counter. The
frequency of output D is 1/10 of clock signal frequency. Hence, the mod-10 counter acts as a
‘divided by 10’ counter. The outputs of the counter during the application of each clock pulse
are shown in the truth table and also in the waveforms.

89

3.2.3 Modulo-N counter

We know that the 4-bit binary asynchronous as well as synchronous counters resets to
0000 and starts counting again in every 16" clock pulse automatically. This is called ‘divide
by 16’ counter or ‘mod-16’ counter. i.e. a mod-N counter resets in every N™ clock pulse. We
can design any mod-N counter using an additional NAND gate in the counter circuit to reset
the counter in every N™clock pulse. In simply says, a MOD-N counter resets at N™ clock
pulse.

3.2.3.1 Mod-3 counter

The logic diagram of Mod-3 counter is shown in figure. It counts from 0 to 2 and at
the 3"clock pulse the counter will reset and starts counting again.

- oA
+—Q JKMS J — +—Q JKMS y |— Clock
FF |] FF mput
"\;DT— C ,r:ﬂm——.
a B kI a &) ki
o)
Cr ‘ Cr +5V
t] .
(L P A .'T'O——I
) Reset

Figure : Mod-3 counter

The counter has to count from 00 to 10. Hence, two negative edge triggered JKMS
flip-flops are used in this counter. J and K inputs of all the FFs are connected to +5v (J =1, K
= 1). This makes the FFs to operate as T (Toggle) flip-flop. The T FF changes its state (i.e.
from 0 to 1 or 1 to 0) for every input clock pulse. The clock input is applied to the first flip-
flop A. The Q output of the FF A is given as clock input to the second flip-flop B. The Q
output of all the flip-flops are taken as the counter outputs BA. The output A is called the
Least Significant Bit (LSB) and the output B is called the Most Significant Bit (MSB). The
CLEAR (Cr) input of all the FFs are connected to ground through the Master Reset switch.

We need to reset the counter at 3clock pulse i.e. at BA = 11. Hence, we have to reset
the counter when B = 1 and A = 1. The NAND gate is used to apply RESET signal. The
inputs for the NAND gate are taken from B and A.

Input Output

Clock | B A

Reset | O 0
1 0 1
2 1 0
3 0 0
4 0 1

90

When the Master Reset switch is pressed, all the FFs are cleared and the counter
output BA is 00. During the negative edge of the first clock pulse, FF A will be toggled i.e.
the output A changes from 0 to 1. At this time, the outputs of all other flip-flops will not
change. Hence, the counter output BA is 01. During the application of the second clock pulse,
FF A will be toggled once again from 1 to 0. This will give a negative edge triggering pulse
to FF B and hence FF B also toggles from 0 to 1. The counter output BA will become 10.

At the 3"clock pulse, the output BA will try to become 11 (B = 1 and A = 1). As the
NAND gate inputs, B and A are 11, the 0 in the gate output RESET the counter. The
frequency of output B is 1/3 of clock signal frequency. Hence, the mod-3 counter acts as a
‘divided by 3’ counter. The outputs of the counter during the application of each clock pulse
are shown in the truth table and also in the waveforms.

3.2.3.2 Mod-7 counter

The logic diagram of Mod-7 counter is shown in figure. It counts from O to 6 and at
the 7™clock pulse the counter will reset and starts counting again.

oC IB OA
Clock
+—1Q UKMS J— +—1Q JKMS J [Q JKMS J — =
FF A FF A FF P
: *;\C . -F\\G :..»:-Qb—o
a © kI a ® Kkt a & ki
O
CrT o Gr +5V
J) =
. oT*
L= i
L — Reset

Figure : Mod-7 counter

The counter has to count from 000 to 110. Hence, three negative edge triggered JKMS
flip-flops are used in this counter. J and K inputs of all the FFs are connected to +5v (J =1, K
= 1). This makes the FFs to operate as T (Toggle) flip-flop. The T FF changes its state (i.e.
from 0 to 1 or 1 to 0) for every input clock pulse. The clock input is applied to the first flip-
flop A. The Q output of the FF A is given as clock input to the second flip-flop B. The Q
output of FF B is given as clock input to the third flip-flop C. The Q output of all the flip-
flops are taken as the counter outputs CBA. The output A is called the Least Significant Bit

91

LSB) and the output C is called the Most Significant Bit (MSB). The CLEAR (Cr) input of
all the FFs are connected to ground through the Master Reset switch.

We need to reset the counter at 7"clock pulse i.e. at CBA = 111. Hence, we have to
reset the counter when C = 1, B =1 and A = 1. The NAND gate is used to apply RESET
signal. The inputs for the NAND gate are taken from C, B and A.

Input Output

Clock | C B A

Reset 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 0 0 0
8 0 0 1

When the Master Reset switch is pressed, all the FFs are cleared and the counter
output CBA is 000. During the negative edge of the first clock pulse, FF A will be toggled i.e.
the output A changes from 0 to 1. At this time, the outputs of all other flip-flops will not
change. Hence, the counter output CBA is 001. During the application of the second clock
pulse, FF A will be toggled once again from 1 to 0. This will give a negative edge triggering
pulse to FF B and hence FF B also toggles from 0 to 1. The counter output CBA will become
010. Similarly the counting continues.

ﬁ'gﬁfﬁ’ﬁg‘!’.ﬁ’.ﬁ 6+ﬁﬁ.
P S S |
Bj R

At the 7"clock pulse, the output CBA will try to become 111 (C=1,B=1and A =
1). As the NAND gate inputs, C, B and A are 111, the O in the gate output RESET the
counter. The frequency of output C is 1/7 of clock signal frequency. Hence, the mod-7
counter acts as a ‘divided by 7’ counter. The outputs of the counter during the application of
each clock pulse are shown in the truth table and also in the waveforms in figure.

3.2.4 Synchronous counter
The speed of operation can be improved by using parallel or synchronous counter.

Here, every flip-flop is triggered by the clock pulse directly (in synchronism), and thus the
settling time is equal to the delay time of single FF. These counters require more hardware.

92

3.2.4.1 Four bit binary synchronous UP counter

The logic diagram of 4-bit binary synchronous UP counter is shown in figure. The UP
counter counts from 0000 to 1111. The synchronous counters are fast in operation but require
more hardware.

A (LSB) B D (MSB)
=5V
J Q J Q Q
Clock 1 JKMS[—* JKMS JKMS
mput Gl FE c|l FF FF
—1> —>
kKl A |a kKl B |a D |5
— P— —— — p—

Figure : Four bit binary synchronous UP counter

Four JKMS flip-flops are used in this counter. J and K inputs of all the FFs are
connected to +5v (J =1, K = 1). This makes the FFs to operate as T (Toggle) flip-flop. The T
FF changes its state (i.e. from 0 to 1 or 1 to 0) for every input clock pulse. The clock input is
applied to all the flip-flops. The gate circuits are arranged in such a way that FF A toggles for
every clock pulse, FF B toggles for every two clock pulses, FF C toggles for every four clock
pulses and FF D toggles for every eight clock pulses. The Q output of all the flip-flops are
taken as the counter outputs ABCD.The output A is called the Least Significant Bit (LSB)
and the output D is called the Most Significant Bit (MSB). The truth table of the counter is
shown in figure.

Input Output
Clock | D C B A
Reset 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
16 0 0 0 0

93

From the truth table we may observe that the output A toggles in every clock pulse,
output B toggles when output A is 1, output C toggles when both A and B are 1, output C
toggles when A, B and C are 1. This can be achieved by using AND gates as shown in the
figure. Toggle input of FF A is directly connected to +5v, hence, FF A toggles for every
clock pulse. The Q output of the FF A is connected to the Toggle input of FF B, hence, FF B
toggles only when A is 0. The output of AND gate 1, whose inputs are A and B, is connected
to the Toggle input of FF C, hence, FF C toggles only when Aand B are 1. Similarly, the
output of AND gate 2, whose inputs are the output of AND gate 1 and C, is connected to the
Toggle input of FF D, hence, FF D toggles only when A, B and C are 1.

The frequency of output A is % of the clock frequency, output B is ¥ of clock, output
C is 1/8 of clock and output D is 1/16 of clock frequency. Hence, the four bit counter acts as a
‘divided by 16’ counter.For the 15" clock pulse, the output is 1111. When the next (16™)
clock pulse is applied, all the flip-flops will toggle from 1 to 0 at the same time and hence the
output is 0000. The outputs of the counter during the application of each clock pulse are
shown in the waveforms.

3.2.4.2 Four bit binary synchronous DOWN counter

The logic diagram of 4-bit binary synchronous UP counter is shown in figure. The
DOWN counter counts from 1111 to 0000. The synchronous counters are fast in operation
but require more hardware.

-

, TKMS
A(LSB) B C FF D (MSB)
5V

J Q J Q . Q J Q
Clock TKMS 1 JKMS r JKMS —1 JKMS
mput | C| FF Cl. FF cl FF cl -FE

—{> —> > —>

(Kl A [Q {1K B po—[F C DO—L Kl b |[Q

Figure : Four bit binary synchronous DOWN counter

Four JKMS flip-flops are used in this counter. J and K inputs of all the FFs are
connected to +5v (J =1, K = 1). This makes the FFs to operate as T (Toggle) flip-flop. The T
FF changes its state (i.e. from 0 to 1 or 1 to 0) for every input clock pulse. The clock input is
applied to all the flip-flops. The gate circuits are arranged in such a way that FF A toggles for

94

every clock pulse, FF B toggles for every two clock pulses, FF C toggles for every four clock
pulses and FF D toggles for every eight clock pulses. The Q output of all the flip-flops are
taken as the counter outputs ABCD. The output A is called the Least Significant Bit (LSB)
and the output D is called the Most Significant Bit (MSB). The truth table of the counter is
shown in figure.

Input Output

Clock | D C B A

Reset 0 0 0 0
1 1 1 1 1
2 1 1 1 0
3 1 1 0 1
4 1 1 0 0
5 1 0 1 1
6 1 0 1 0
7 1 0 0 1
8 1 0 0 0
9 0 1 1 1
10 0 1 1 0
11 0 1 0 1
12 0 1 0 0
13 0 0 1 1
14 0 0 1 0
15 0 0 0 1
16 0 0 0 0

From the truth table we may observe that the output A toggles in every clock pulse,
output B toggles when output A is 0, output C toggles when both A and B are 0, output C
toggles when A, B and C are 0. This can be achieved by using AND gates as shown in the
figure. Toggle input of FF A is directly connected to +5v, hence, FF A toggles for every

clock pulse. The Q output of the FF A is connected to the Toggle input of FF B, hence, FF B
toggles only when A is 0. The output of AND gate 1, whose inputs are Qa andQsg, is
connected to the Toggle input of FF C, hence, FF C toggles only when A and B are 0.
Similarly, the output of AND gate 2, whose inputs are the output of AND gate 1 and Qc, is
connected to the Toggle input of FF D, hence, FF D toggles only when A, B and C are 0.

\ R e R e TN N IF IR
T e B N N B e B
B

o | ; |

_f |

The frequency of output A is % of the clock frequency, output B is ¥ of clock, output
C is 1/8 of clock and output D is 1/16 of clock frequency. Hence, the four bit counter acts as a
‘divided by 16° counter.For the 15" clock pulse, the output is 0000. When the next (16™)
clock pulse is applied, all the flip-flops will toggle from 0 to 1 at the same time and hence the

95

output is 1111. The outputs of the counter during the application of each clock pulse are
shown in the waveforms.

3.2.4.3 Four bit binary synchronous UP/DOWN counter
The logic diagram of 4-bit binary synchronous UP/DOWN counter is shown in figure.

The UP counter counts from 0000 to 1111. The DOWN counter counts from 1111 to 0000.
The synchronous counters are fast in operation but require more hardware.

___ vV -
Up/Down & B D
’ D [
1 J
JKMS O] s I Tenre] ©
Clock \F_ T

HJ E\.\IS JI\-
) o FF FF o FF — ol FF
el Y) >) >
- [i —{ B lo]4> K C r')g D |o

Figure : Four bit binary synchronous UP/DOWN counter

Four JKMS flip-flops are used in this counter. J and K inputs of all the FFs are
connected to +5v (J =1, K = 1). This makes the FFs to operate as T (Toggle) flip-flop. The T
FF changes its state (i.e. from 0 to 1 or 1 to 0) for every input clock pulse. The clock input is
applied to all the flip-flops. The gate circuits are arranged in such a way that FF A toggles for
every clock pulse, FF B toggles for every two clock pulses, FF C toggles for every four clock
pulses and FF D toggles for every eight clock pulses.

UP function :

For UP function, the Q output of previous FF must be connected to the Toggle input
of next FF. This is achieved by the AND gates 1, 2 and 3 and the OR gates. The UP function

is enabled by connecting Up/Down input to +5V (logic 1). Now, the counter functions as UP
counter.

DOWN function :

For DOWN function, the Q output of the previous FF must be connected to the
Toggle input of next FF using the AND gates 4, 5 and 6 and the OR gates. The DOWN

function is selected by connecting the Up/Down input to GND (logic 0). Now, the counter
functions as DOWN counter.

3.2.5 Johnson counter

The logic circuit of Johnson counter is shown in figure. It is similar to ring counter

except one change. Instead of the Q output, Q output of the last flip-flop is given as the input
for the first flip-flop. Therefore, the Johnson counter is also called Twisted-ring counter. In
Johnson counter, there is no need for the START button.

96

\\ o A 0B oG oD
DFF OFF 3 DFF
) [w] o ap— Q o [w]

Clock o o
mput Cr Cr

Reset

Figure : Johnson counter

The flip-flops are connected in synchronous mode. i.e. clock pulse is applied to all the
flip-flops in parallel. The output of the first flip-flop A is connected as the input to the second
flip-flop. The output of the second flip-flop B is connected as the input to the third flip-flop.
The output of the third flip-flop C is connected as the input to the fourth flip-flop. The

Qoutput of the fourth flip-flop D is connected as the input to the first flip-flop. The CLEAR
(Cr) input of all the FFs are connected to ground through the Master Reset switch.

Initially, the master reset switch is pressed to clear all the FFs so that ABCD is 0000.

When the first clock pulse is applied, Q of the fourth FF D (1) is moved to FF A, Q of FF A
(0) to FF B, Q of FF B (0) to FF C and Q of FF C (0) to FF D and the counter output is 1000.
When the second clock pulse is applied, Q of the fourth FF D (1) is moved to FF A, Q of FF
A (1) to FF B, Q of FF B (0) to FF C and Q of FF C (0) to FF D and the counter output is
1100. Similarly the circuit operation continues. The outputs of the counter during the
application of each clock pulse are shown in the truth table and also in the waveforms.

Input Output
Clock
Reset

w

=== =1
o|o|o|lo|lr|kr|kr|r|o|o

ellellalili I ol lellell@)
o|lor k| Ikr|IFk|lo|lolo|lo|T

N [OONOO|OIBRWINF

3 4 5 6 7 8 9
An SRR AR Ananin]
— | -
. |

Clock J 1\{,_'

Input

97

3.2.6 Ring counter

The logic diagram of 4-bit ring counter is shown in figure. We use D FF in the ring
counter circuit. This counter is called ring counter because a ‘1’ is passed to the next flip-flop
is a circular ring format.

oA obB ol]
DFF DFF
QF— 0o QF—] 0 "
- P
® @
[} LK (] o] ™ (LM 03
Clock Y i
input [Cr or
[2 s i L] o & i
I a| & - - -

Reset
Figure : Ring counter

The flip-flops are connected in synchronous mode. i.e. clock pulse is applied to all the
flip-flops in parallel. The output of the first flip-flop A is connected as the input to the second
flip-flop. The output of the second flip-flop B is connected as the input to the third flip-flop.
The output of the third flip-flop C is connected as the input to the fourth flip-flop. The output
of the fourth flip-flop D is connected as the input to the first flip-flop. The CLEAR (Cr) input
of all the FFs are connected to ground through the Master Reset switch.

Initially, the master reset switch is pressed to clear all the FFs. When the start button
(PRESET) is pressed a ‘1’ will be stored in the first flip-flop A and the output ABCD is 1000.
When the first clock pulse is applied, A is moved to B, B to C, C to D and D to A and the
counter output is 0100. Similarly the circuit operation continues. The outputs of the counter
during the application of each clock pulse are shown in the truth table and also in the
waveforms.

Input Output

Clock | A B C D

Reset 0 0 0 0

Start 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0
5 0 1 0 0
6 0 0 1 0
7 0 0 0 1
8 1 0 0 0

98

o [[ALY
O N o T
— —

: — —

: I

3.3 Registers

A flip-flop can store only one binary digit. Register is a combination of N flip-flops to
store N bits. For example, an 8-bit register can be used to store a data of 8-bit information.

3.3.1 4-bit Shift register

Shit register is a type of register in which data is shifted from one flip-flop to another flip-
flop for storing and retrieving the information. Depending upon how we enter the data into
the shift register (input) and how we take the data from the shift register (output), shift
registers are classified into four types. They are,

Serial IN - Serial OUT (SISO) Shift register
Serial IN - Parallel OUT (SIPO) Shift register
Parallel IN - Serial OUT (PISO) Shift register
Parallel IN - Parallel OUT (PIPO) Shift register

N =

The logic diagram of shift register with all the four functions SISO, SIPO, PISO and
PIPO is shown in figure.

Parallel inputs
Pl Ple

N ——
A

Load
+5V = -y
W T—T17 |

7 Parallel ouputs

' (A.B,C.D)
A B c oD
le Pr iPr lF'r
- = Serial output
Serial mput DFF DFF DFF DFF L .50
. D Q D Q D D —

SI Q Q
® ® © ©
r ﬂ/ K Q C(_,.) Cix Q D/_.) CLE Q r C/ QK Q
{ 7 (8] 8] o
Clock Cr Cr Cr Cr
input * s } .) . }
[+ ' LoTo |
Reset

Figure : Shift register

99

The operation of SISO, SIPO, PISO and PIPO are explained in the following sections.
3.3.2 Serial IN — Serial OUT (SISO) Shift register

In SISO shift register the input is given in serial form (i.e. one bit by one bit) and the
output is taken in serial form. The logic diagram of SISO shift register is shown in figure.
Four D FFs A, B, C and D are used is synchronous mode. Clock pulse is applied to all the
FFs simultaneously. The Serial Input Data (Sl) is given to the D input of the first FF. The Q
output of FF A is given to the D input of FF B. The Q output of FF B is given to the D input
of FF C. The Q output of FF C is given to the D input of FF D. The Serial Output data (SO) is
taken from the Q output of FF D. The CLEAR inputs of all the FFs are connected to ground
through the Master Reset switch.

L Senal t
Sertal input DFF DFF _ DFF DFF Ensgutpu
I . 10 Q W] (] D Q o QF——»
® ® © ®
- c[} CLK o] .;_» CLK Q {J::} CLK Q r {[} CLE 0

Clock O o 3. =

. 0c Cr Cr Cr Cr

input 1

* - - 4]-} |
Feset

The sequence for input and output operations is given in table.

Input (Write) operation Output (Read) operation
S.No Sequence (Serial Input) | S.No | Sequence (Serial Output)
Press the Master RESET The first bit is available in

L switch to clear all the FFs. 1. | the Serial Qutput (SO)

terminal.
Give the serial data to the Give first clock pulse to get
2. | Serial Input terminal S, 2. | the second bit from SO
one by one (4 bits). terminal.
For each input, one clock Give second clock pulse to
3. | pulse must be applied (4 3. | get the third bit from SO
clock pulses). terminal.

Give third clock pulse to
4. | get the fourth bit from SO
terminal.

The data (4 bits) are stored
in the four FFs.

3.3.3 Serial IN — Parallel OUT (SIPO) Shift register

In SIPO shift register the input is given in serial form (i.e. one bit by one bit) and the
output is taken in parallel form (i.e. all the bits at the same time). The logic diagram of SIPO
shift register is shown in figure. Four D FFs A, B, C and D are used is synchronous mode.
Clock pulse is applied to all the FFs simultaneously. The Serial Input Data (SI) is given to the
D input of the first FF. The Q output of FF A is given to the D input of FF B. The Q output of
FF B is given to the D input of FF C. The Q output of FF C is given to the D input of FF D.
The Parallel Output data (ABCD) are taken from the Q outputs of each FF. The CLEAR
inputs of all the FFs are connected to ground through the Master Reset switch.

100

Parallel outputs (A, B, C and D)

oA oB oC D
Senal input]
g1 DFF DFF DFF DFF
- 1D] D] D Q D Q

l l [ofe

Reset

The sequence for input and output operations is given in table.

Input (Write) operation Output (Read) operation

S.No | Sequence (Sequence Input) | S.No | Sequence (Parallel Output)

1 Press the Master RESET
" | switch to clear all the FFs.
Give the serial data to the
2. | Serial Input terminal Sl,
one by one (4 bits).
For each input, one clock
3. | pulse must be applied (4
clock pulses).
The data (4 bits) are stored
in the four FFs.

The 4-bits parallel data are
1. taken out from ABCD
terminals.

3.3.4 Parallel IN - Serial OUT (P1SO) Shift register

In PISO shift register the input is given in parallel form (i.e. all the bits at the same
time) and the output is taken in serial form (i.e. one bit by one bit). The logic diagram of
SIPO shift register is shown in figure. Four D FFs A, B, C and D are used is synchronous
mode. Clock pulse is applied to all the FFs simultaneously. The Parallel Input data Pla, Plg,
Plc and Plp are given to the PRESET terminals of the FFs through NAND gates. The NAND
gates are enabled by the LOAD switch. The Q output of FF A is given to the D input of FF B.
The Q output of FF B is given to the D input of FF C. The Q output of FF C is given to the D
input of FF D. The Serial Output data (SO) is taken from the Q output of FF D. The CLEAR
inputs of all the FFs are connected to ground through the Master Reset switch.

101

Parallel inputs

Load PIA PIB Plc PIo
R . ' 1
Pr Fr II—‘r .I-' Serial output
o o a 50
o DFF a 5 OFF ol oFE | | DFF | e
® ® ©)
Clock b 7 v 1
].IlplIt - - 4 F1 1 r's : 1 ’
- - - ale |
Reset
Input (Write) operation Output (Read) operation
S.No | Sequence (Parallel Input) S.No | Sequence (Serial Output)
Press the Master RESET The 4-bits parallel data are
1. . 1. | taken out from ABCD
switch to clear all the FFs. .
terminals.
Give the 4-bit input data to Give first clock pulse to get
2. | the Parallel Input terminals | 2. | the second bit from SO
Pla, Plg, Plc and Plp, terminal.
Give second clock pulse to
3. | Press the LOAD switch. 3. | get the third bit from SO
terminal.
. Give third clock pulse to
4. The data (4 bits) are stored 4. | get the fourth bit from SO
in the four FFs. .
terminal.

3.3.5 Parallel IN — Parallel OUT (PIPO) Shift register

In PIPO shift register the input is given in parallel form (i.e. all the bits at the same
time) and the output is taken in parallel form. The logic diagram of PIPO shift register is
shown in figure. Four D FFs A, B, C and D are used is synchronous mode. Clock pulse is
applied to all the FFs simultaneously. The Parallel Input data Pla, Plg, Plc and Plp are given
to the PRESET terminals of the FFs through NAND gates. The NAND gates are enabled by
the LOAD switch. The Q output of FF A is given to the D input of FF B. The Q output of FF
B is given to the D input of FF C. The Q output of FF C is given to the D input of FF D. The
Parallel Output data (ABCD) are taken from the Q outputs of each FF. The CLEAR inputs of
all the FFs are connected to ground through the Master Reset switch.

102

Parallel inputs

 Load PL PIs Plc PID
SV e : ! | Parallel outputs
\/ . L) (A.B.C.D)
T fa) A a B o [ol
Pr Pr Pr lr‘-‘r
s sl 0
DFF DFF DFF OFF
D 3 D a D aF——
®) ® © @
> al 4>e g e g e g
o 7 T L=
CIDCI{ Cr Cr Cr Cr
]ﬂpm - - , i &
. - * - 1
Reset
Input (Write) operation Output (Read) operation

S.No | Sequence (Parallel Input) | S.No | Sequence (Parallel output)
1 Press the Master RESET

" | switch to clear all the FFs.

Give the 4-bit input data to

2. | the Parallel Input terminals

Pla, Plg, P|C and Plp.

3. | Press the LOAD switch.

The data (4 bits) are stored

in the four FFs.

The 4-bits parallel data are
1. | taken out from ABCD
terminals.

CLORE

103

UNIT - IV
MEMORY DEVICES
Memory devices

Modern digital systems require the capability of storing and retrieving large amounts
of information at high speeds. Semiconductor memories are digital circuits that store digital
information (binary data) in large quantity.

4.1 Classification of Semiconductor memories
The various classifications of semiconductor memories are shown in figure.
Semiconductor Memory

Random Access Memory Sequential Access Memory

S —

Read/MWrite Memory Read Only Memary . i
(RAM) (ROM) Shift Registers Queues
(Volatile) (Nonvolatile) | | | | | I
Senal In Parallel In First In Last In
Static RAM Dynamic RAM Parallel Out Serial Out First Out First Out
(SRAM) (DRAM) (SIPO) (PISO) (FIFO) (LIFO)
| | | |
Mask ROM Programmable Erasable Electrically Flash ROM
ROM Programmable Erasable
(PROM) ROM Programmable
(EPROM) ROM

(EEPROM)

Figure : Classification of Semiconductor memory

Basically, Semiconductor memory is classified into Random Access Memory and
Sequential memory. In Random Access Memory, the data can be stored and retrieved in any
order but in Sequential Memory the data is stored and retrieved in serial order.

The Random Access Memory is further divided into Read and Write memory (RAM)
and Read Only Memory (ROM). Data can be read and written in RAM but in ROM the user
can only read the data and cannot write or change the data. RAM can retain the memory only
when power is present but ROM can retain the data even when the power is absent. So, RAM
is called volatile memory and ROM is called non-volatile memory.

RAM is further divided into Static RAM and Dynamic RAM. Static RAM can retain
the data indefinite time as long as the power is present. But, in Dynamic RAM the stored data
will gradually disappear even when the power is present. Hence, we need to refresh the
Dynamic RAM periodically.

ROM is further classified into Mask ROM, PROM, EPROM, EEPROM and Flash
ROM according to the process of entering the data into the memory (programming) and
erasing the data.

Shift registers and Queues are classified under Sequential Access Memory. There are
two types of shift registers namely Serial In Parallel Out (SIPO) and Parallel In Serial Out
(P1SO). Queues are classified into First In Last Out (FILO) and Last In First Out (LIFO).

104

4.2 RAM organization

The block diagram of a RAM chip is shown in figure.

Address Data
Inputs I :(> Outputs
RAM

Data k—— Read (RD)
Inputs — ,
<——— Write (WR)

Chip Select (CS)

Figure : Block diagram of RAM

Address signals:

The RAM chip needs address inputs to select the required memory location.

The following table shows the number of address inputs (or lines) required for
addressing the memory locations. If there are ‘n’ address lines, then the memory have 2"
locations.

Address lines Memory Size (No. of locations)

(n) 2"

4 16

8 256

10 1024 (1 Kilo)
11 2048 (2 Kilo)
12 4096 (4 Kilo)
13 8192 (8 Kilo)
14 16384 (16 Kilo)
15 32768 (32 Kilo)
16 65536 (64 Kilo)

Table : Address lines and Memory size

Data signals:

The data is given through the Data Inputs lines and the stored data is taken from the Data
Outputs lines.

105

Control signals:

In addition to the address and data lines, there are some control signals like Chip
Select (CS), Read (RD) and Write (WR). CS is used to select the memory chip, only when
CS is active (CS = 1), the RAM chip will work. WR line used while writing the data into the
memory locations and RD line is used while reading the data from the memory location
selected by the address inputs.

The organization of 16 x 4 bits RAM chip is shown in figure.

Data inputs

One bit RAM Cell
Input — -
Buffers

0
1
Ao 2

o— | 4-line-to
Aa 16-line

— Decoder
A
14 L
140 (144 (142 |14 o

15 150|151 (152 [15a

Address inputs

Read (RD1

output |4 Vo YV Y
Buffers | ‘ ‘ :
-] (+] (-] [+]
Oy O, 0, O
_—
Data outputs

Figure: Organization of 16 x 4 bits RAM chip

It has 16 memory locations numbered from 0 to 15. Each memory location can store 4
bits numbered from 0 to 3. So, there are 64 (16 multiplied by 4) one bit memory cells. The
particular memory location is selected by the 4-line to 16-line decoder. Hence, there are 4
address inputs lines labeled as A0 to A3.The data inputs Iy to I3 are given to the memory cells
through the Input Buffers. The Input buffers are enabled by WR signal. The data outputs
from the selected memory cells are taken from Output Buffers. The output buffers are
enabled by RD signal. Both the Input and Output buffers are enabled only when CS input is
HIGH. In recent memory chips, instead of using separate Input and Output Buffers,
Bidirectional buffers are used.

Write operation:

The following sequences are required to write (store) a data into a particular memory
location.

The Chip Select signal is applied to the CS pin (CS = 1).

The word (data) to be stored is applied to the Data Input pins I to Is.

The address of the desired memory location is applied to the Address Input pins Ag to As.
The write command is applied by making WR pin to HIGH (1) level and RD pin to low
(0) level.

el oA

106

Read operation:

The following sequences are required to read the data from a particular memory location.

=

The Chip Select signal is applied to the CS pin (CS =1).

The address of the desired memory location is applied to the Address Input pins Ag to As.

3. The read command is applied by making RD pin to HIGH (1) level and WR pin to low
(0) level.

4. Data will be available at the Data output pins O; to Os.

N

43 Static RAM (SRAM)

RAM is classified into Static RAM and Dynamic RAM. Static RAM can retain the
data indefinite time as long as the power is present. But, in Dynamic RAM the stored data
will gradually disappear even when the power is present. Hence, we need to refresh the
Dynamic RAM periodically.

Static RAM circuits can be constructed using Bipolar Junction Transistor (BJT) or
Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Based on the type of
transistor used, SRAM is classified into:

1. Bipolar Static RAM
2. MOS Static RAM

4.3.1 Bipolar Static RAM Cell
The simplified circuit diagram of Bipolar Static RAM cell is shown in figure. It stores

1 bit of information. The circuit is nothing but a flip-flop. It can store either 0 or 1 as long as
the power is applied.

Vcec

I

DATA DATA

Q1 Q

Set Reset

o
X select line o

V calart lina

Figure :Bipolar Static RAM Cell

107

The Bipolar Static RAM cell is implemented using two BJTs with multiple emitters.
The two transistors are cross-coupled together to get the bi-stable multi-vibrator (flip-flop)
operation. Large number of similar cells is connected in matrix form. The X-select (ROW
select) line and Y-select (COLUMN select) line are used to select a particular cell from the
matrix.The Set input is used to store a ‘1’ in the memory cell and Reset input is used to store

a ‘0’ in the memory cell. The output is taken either from Data line or from Dataline. The Q1
and Q2 are cross coupled inverters, hence one is always OFF while the other is ON.

Read operation: When the cell is selected by the X-select and Y-select lines, the data stored
in the cell is available at Data and Data output lines.

Write operation: The cell is selected by the X-select and Y-select lines. By pulsing a HIGH
on the SET input line, a ‘1’ is stored in the cell. Similarly, by pulsing a HIGH in the RESET
input line, a ‘1’ is stored in the cell.

4.3.2 MOS Static RAM Cell

The simplified circuit diagram of MOS Static RAM cell is shown in figure. It stores 1
bit of information. The circuit is nothing but a flip-flop. It can store either 0 or 1 as long as
the power is applied.

X Row Select

!

Voo

R i
EJ LE

Data .,J:L ,J:L Data

line line

Write (W) Read (R)

lﬂ | N [T £
T7 ‘ l | 8
To Y Column select T

Figure : MOS Static RAM Cell

I

The MOS Static RAM cell is implemented using ten Enhancement mode MOSFETSs.
T1 and T2 form the basic cross-coupled inverters and T3 and T4 act as load resistors.T5 and
T6 are used for taking the outputs. T7 and T9 are for write input and T8 and T10 are used for
read input. X and Y lines are used for selecting the cell.

Write operation: Write operation is enabled by making W signal HIGH. The data input either
‘0’ or ‘1’ is given through the DATA IN terminal. When DATA IN is ‘1” T2 is turned ON
and T1 is CUTOFF. When DATA IN is ‘0’ T2 is turned CUTOFF and T1 is ON

Read operation: Read operation is enabled by making R signal HIGH. The cell is selected by
the X-select and Y-select lines. The X-select line enables T6, Y-select line enables T8. R

input selects T10. Hence, Dis available at the output terminal.

108

44 Dynamic RAM

of dynamic RAM.

Dynamic RAM stores the data as a charge on the capacitor. Figure shows the concept
Sense
lire

¥

B

_| storags
Caniral

“Tcapacitor
ine

Figure : Concept of dynamic RAM

occupies very less space when compared with static RAM.

When ROW (Control) and COLUMN (Sense) lines go HIGH, the MOSFET conducts
and the capacitor retains the charge. The transistor acts like a switch only. In this way, it

and charges the capacitor. When the ROW and COLUMN lines go low, the MOSFET opens

stores 1 bit. Since only a single MOSFET and capacitor are needed, the dynamic RAM

The charge stored in the capacitor will discharge slowly and hence the data stored in
Fic

the cell will lost in the course of time even when the power is present. This is the main
used for Write, Read and Refresh operations.

disadvantage of dynamic RAM. Extra hardware is used to retain the charge in the capacitor.
The extra hardware is called ‘Refresh logic’ and the operation is called ‘Refreshing’.

The Write, Read and Refresh operations are illustrated in figure. Three buffers are

Refresh Column
buffer select
)
Refresh
Row
Select ‘|’
output .>_,—|_‘
buffer
Dout J_ C
- 1
Din
i

input
hiiffer
Figure : Dynamic RAM Cell

109

When R/W line is LOW, input buffer is enabled and output buffer is disabled. When

R/W line is HIGH, input buffer is disabled and output buffer is enabled.

Write operation:

1.

2.

By making the R/W line LOW, the input buffer is enabled and the output buffer is
disabled.
To write a ‘1’

a. DIN line is made HIGH.

b. ROW Select is made HIGH and the transistor is turned ON.

c. Now, the capacitor is charged and stores a ‘1°.
To write a ‘0’

a. DIN line is made LOW.

b. ROW Select is made HIGH and the transistor is turned ON.

c. Now, the capacitor is discharged and stores a ‘0’.
When the ROW Select is made LOW, the transistor is switched OFF and the charge on
the capacitor is not disturbed.

Read operation:

1.
2.

By making the R/W line HIGH, the output buffer is enabled and input buffer is disabled.
ROW Select line is made HIGH. This turns ON the transistor and connects the capacitor
to the DOUT line through the output buffer.

Refresh operation:

1.

To enable the Refresh operation, R/W line, ROW line and REFRESH line are made
HIGH.
The transistor is turned ON and the capacitor is connected to COLUMN line.

As R/W is HIGH, the output buffer is enabled and the stored data bit is applied to the
input of the refresh buffer.

The output of the refresh buffer either ‘0’ or ‘1’ is applied to the COLUMN line and this
maintains the charge on the capacitor.

Comparison between Static RAM (SRAM) and Dynamic RAM (DRAM)

S. No Static RAM (SRAM) Dynamic RAM (DRAM)
Dynamic RAM contains more
memory cells per unit area as

Static RAM contains less
1. memory cells per unit area.

(Occupies more space) compared to SRAM.
(Occupies less space)
2. Faster Slower
3. Data is stored in flip-flops. Data is stored as a charge on the
capacitor.

Refreshing circuitry is required to

Refreshing circuitry is not maintain - the charge on the

4. required. (Less hardware) capacitor. Refreshing _sr_lould be
done in every few milliseconds.
(More hardware)

5. Cost is less. Cost is more.

Table : SRAM Vs DRAM

110

45 SDRAM

Synchronous Dynamic Random Access Memory (SDRAM) is a faster memory than
ordinary Dynamic RAM (DRAM). SDRAM is mainly used in computers. Ordinary DRAM
operates in an asynchronous manner. They react to changes as the control inputs change, and
also they are only able to operate as the requests are presented to them, dealing with one at a
time. SDRAM is able to operate more efficiently. It is synchronized to the clock of the
processor.

With SDRAM having a synchronous interface, it has an internal finite state machine
(FSM) that pipelines incoming instructions. This enables the SDRAM to operate in a more
complex fashion than an asynchronous DRAM. This enables it to operate at much higher
speeds. As a result of this, SDRAM is capable of keeping two sets of memory addresses open
simultaneously. By transferring data alternately from one set of addresses, and then the other,
SDRAM reduces the delays associated with asynchronous DRAM.

SDRAM Pins

Ao - A1 ; i:: DQo - DQ1s

BAQ ——— > SDRAM <——— WE

BA1 ——| <———— DQM
CLK ——> <—— RAS
CKE ——3 <——— CAS

.

A0 - A1l Address Inputs

DQO0-DQ15 | Data Inputs / Outputs

RAS Row Address Strobe Input
CAS Column Address Strobe Input
CLK Clock Input

CKE Clock Enable Input

WE Write Enable Input

BAO & BA1 Bank Selection Inputs

DQM Data Mask Input

Figure : Pins of a typical SDRAM Chip

111

Pipelining

Pipelining means that SDRAM can accept a new instruction before it has finished
processing the previous one. In other words, it can effectively process two instructions at
once. One write command can be immediately followed by another write command without
waiting for the original data to be stored.

SDRAM architecture

The SDRAM architecture can be split into two main areas:

e Array: This is the area of the chip where the memory cells are implemented. It is
normally divided into a number of banks, which in turn is split into smaller areas
called segments.

e Periphery: This is the area of the chip where control and addressing circuitry is
located as well as items such as line drivers and sense amplifiers.

SDRAM devices are internally divided into 2, 4 or 8 independent internal data banks.
SDRAM can accept one command and transfer one word of data per clock cycle. Typical
clock frequencies are 100 and 133 MHz. Chips are made with a variety of data bus sizes
(most commonly 4, 8 or 16 bits).

SDRAM chips are generally assembled into 168-pin DIMMSs (Dual In-line Memory
Modules) that read or write 64 or 72 bits at a time.

4.6 DDR SDRAM

Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM)
is a type of memory IC used in computers. Compared to Single Data Rate (SDR) SDRAM,
the DDR SDRAM interface makes higher speeds possible by more strict control of the timing
of the clock signals. Phase Locked Loops (PLLs) are used to meet the required timing
accuracy. The interface uses double pumping (transferring data on both the rising and falling
edges of the clock signal) to lower the clock frequency.

The name "double data rate" refers to the fact that a DDR SDRAM achieves nearly
twice the bandwidth of a SDR SDRAM running at the same clock frequency, due to this
double pumping.

With data being transferred 64 bits at a time, DDR SDRAM gives a transfer rate of
(memory bus clock rate) x 2 (for dual rate) x 64 (number of bits transferred) / 8 (number of
bits per byte). Thus, with a bus frequency of 100 MHz, DDR SDRAM gives a maximum
transfer rate of 1600 MB/s (Mega Bits per second).

DDR SDRAM banks
DDR SDRAM memory has multiple banks. This enables the memory to provide
multiple interleaved memory access, and this enables the overall memory bandwidth to be

increased. DDR SDRAMSs access multiple memory locations in a single read or write
command.

112

http://en.wikipedia.org/wiki/DIMM
http://en.wikipedia.org/wiki/Double_data_rate
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/SDRAM#SDR_SDRAM
http://en.wikipedia.org/wiki/Double_data_rate
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Bandwidth_(computing)
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/MB/s

DDR SDRAM power

DDR SDRAM provides an improvement in speed, but, the power dissipation is high.
The power required by a DDR SDRAM is related to the number of rows that are open at any
one time. Thus to gain the fastest operation, it is necessary to open a number of rows
together, but this consumes more power.

4.7 Read only memory

ROM (Read Only Memory) is a form of semiconductor memory that retainsits
contents even when the power supply is switched off. So, ROM is called Non-volatile
memory. In ROM, we can read the data any number of times but data can be written to once
during the manufacturing process only. ROM is used to store the “boot” or start-up program
(so called firmware) that acomputer executes when powered on. ROM is also used in systems
with fixed functionalities, e.g.controllers in cars, household appliances etc.

There are some special varieties of ROM such as PROM, EPROM, EEPROM and
Flash memory.

PROM (Programmable Read Only Memory) : PROM is like ROM but allows end-users to
write their own programs anddata. It requires special PROM writing equipment. The users
can only write-once to PROM.

EPROM (Erasable Programmable Read Only Memory) : With EPROM we can erase
(using strong ultra-violet light) the contentsof the chip and rewrite it with new contents,
typically several thousand times. It is commonly used tostore the “boot” program of a
computer, known as the firmware.

EEPROM (Electrically Erasable Programmable Read Only Memory)or E2PROM: As
the name implies the contents of EEPROMSs are erasedelectrically. EEPROMSs are also
limited to the number of erase-writes that can be performed (e.g,1,00,000) but support
updates (erase-writes) to individual bytes whereas EPROM updates the wholememory and
only supports around 10,000 erase-write cycles.

FLASH memory: It is a cheaper form of EEPROM where updates (erase-writes) can only be
performedon blocks of memory, not on individual bytes. Flash memories are found in USB
Pen drive, memory cardsand typically range in size from 1GB to 32GB. The number of
erase/write cycles to a block istypically several hundred thousand times.

Types of ROM

e ROM
o Written during manufacture
o Very expensive for small volumes
e Programmable ROM (PROM)
o Read-only
o Write-once
o Needs special equipment to program
o Convenience
e Erasable Programmable (EPROM)
o R/W
o Have to erase before write
o Erased by UV

113

e Electrically Erasable (EEPROM)
o R/IW
o Takes much longer to write than read
o Individual bytes programmable
e Flash memory
o Faster erase (block erase)
o Higher density than EEPROM

4.8 ROM organization

ROM is a read only memory. We can’t write data in this memory. It is a non-volatile
memory i.e. it can retain the data even when the power is switched off. Generally ROM is
used to store permanent data like computer programs and look-up tables. Figure shows the
organization of simple ROM using diode matrix. Diodes are physically fabricated in the
required positions during manufacturing of the memory chip. ROMs are cheap when
produced in large volumes.

w | XL X XA

) s I R =
Decader 10_)@/')@/)@/)@/)@/

A 11 .)Q/ 2@/ J@/

CE. .4 /57 .4 f7 % /&7 .4

Output enable Do D+ Da Ds Da4 Ds Ds D7

| - _J
—

Data output

Figure : Four-byte Diode Matrix ROM

The address lines A0 and Al are decoded by 2:4 decoder and used to select one of the
four rows. The active low output of the decoder produces a ‘0’ on the selected row. When the
row line is ‘0’ and if the diode is present in the column, we get ‘0’ at the particular column.
Data is available on the output lines only when the output enable (OE) signal is low. Table
shows the contents of ROM at four locations.

114

Address in Binary data Data in
Binary DO D1 D2 | D3 | D4 | D5 | D6 | D7 Hex
00 1 0 1 0 0 1 0 1 A5
01 0 1 0 1 0 0 0 1 51
10 0 1 0 0 0|1 |1 0 46
11 1 1 0 1 0 1 0 1 D5

Table : Data stored in ROM
4.9 Expanding memory
We need to expand the memory for the following two reasons.

1. To increase the word size (number of bits in each memory location).
2. To increase the memory capacity (number of locations).
4.9.1 Expanding word size

The word size i.e. the number of bits in the data lines can be expanded by connecting
two or more ICs together. The connection diagram is shown in figure.

Do
D7
D7 D4 D3 Do
1/Os 1/00 1/03 /00
A 1Kx4 Ao 1Kx4
A9 X 'A\9 X
CS WR RD CS WR RD
Chip Select
WR
RD

Figure : Expanding word size of memory

The ICs are connected in such a way that the data lines are connected in series and the
address lines are connected in parallel. There are two 1K x 4 (1024 locations, each location
has 4 bits) memory ICs are used to get 1K x 8 memory. For 1024 locations, there are 10
address lines A0 to A9. Both memory ICs are selected simultaneously by common chip select
signal. When a particular address is given, both ICs are selected. Out of 8-bits, the first 4-bits
are taken from one IC and the next 4-bits are taken from another IC.

115

4.9.2 Expanding memory capacity

The memory capacity (i.e. the number of locations) can be increased by connecting
two or more ICs in parallel. The figure shows the connection diagram for 16 K x 8 memory
using four 4K x 8 memory chips.

Ao
An
o || | | | | | |
I 1 1 I
A Ao D7 Do A Ao D7 Do An Ao D7 Do A Ao D7 Do
4Kx8 ©) 4Kx8 ® 4Kx8 ® 4Kx8 @
CS WR RD CS WR RD CS WR RD CS WR RD
RD
WR
A1z 0
2x4 1
Decoder2
Atz
3

Figure : 16K x 8 Memory expansion using four 4k x 8 memory chips
Address lines A12 and A13 are decoded by the 2:4 decoder to select any one of the
memory chip. When A12 and A13 are 00, chip 1 will be selected. Similarly when Al12 and
Al13 are 11, chip 4 will be selected. Address lines A0 to A1l are used to select a particular
memory location in the selected chip.
410 PROM (Programmable Read Only Memory)
PROM is like ROM but allows end-users to write their own programs and data. It

requires special PROM writing equipment. The users can only write-once to PROM. Figure
shows four byte PROM.

Fuse

Link\

Figure : Fuse link used in PROM

It has diodes in every bit position; therefore the output is initially all Os. Each diode
has a fusible link in series with it. We can blow the fuse by selecting the particular row and
column and applying some high current (20 to 50 mA for a period of 5 to 20 ps) at the
corresponding output. This can be done by a special device called PROM programmer.

116

T
oS AN AN N N NN

Figure : Organization of four byte PROM
This process is also known as burning of PROM. The PROMs are one-time
programmable. Once programmed, the information stored is permanent. The blown fuse
stores a ‘1°. The fuse uses materials like nichrome and polycrystalline.

Comparison between ROM and PROM

S. No. ROM PROM
1. Non-programmable. Programmable.
Flexible (Field-Programmable i.e.

Not flexible (because data

2. can't be changed. can be programmed in any place
of work).

3. It is comparatively slower. | It is comparatively faster.

4 Economical only when | Economical even when produced

produced in large volumes. | in small volume.
5 Used in PC's Mainly used for research and

development purpose.
Writing of cells done by
'masking’ mechanisms.

Mainly done electrically.

Table : ROM vs PROM

117

411 EPROM (Erasable Programmable Read Only Memory)

EPROM (Erasable Programmable Read Only Memory) is a type of memory chip. It
retains its data even when the power supply is switched off. So, it is called non-volatile
memory. It is an array of floating-gate transistors individually programmed by a special
electronic device. The device supplies higher voltages than the normal operating voltage.
Once programmed, an EPROM can be erased by exposing it to strong ultraviolet light source
(such as from a mercury-vapor light).

Figure : A typical EPROM chip

EPROMs are easily identified by the transparent quartz window in the top of the
package, through which the silicon chip is visible. The window permits exposure to UV light
during erasing.

Operation

?

| Control Gate |
Floating Gate

Source Drain

Substrate

Figure : Cross-section of floating-gate transistor used in EPROM

Each storage location of an EPROM consists of a single field-effect transistor. Each
field-effect transistor consists of a channel in the semiconductor body of the device. Source
and drain contacts are made to regions at the end of the channel. An insulating layer of oxide
is grown over the channel, then a conductive (silicon or aluminum) gate electrode is
deposited, and a further thick layer of oxide is deposited over the gate electrode. The floating
gate electrode has no connections to other parts of the integrated circuit and is completely
insulated by the surrounding layers of oxide. A control gate electrode is deposited and further
oxide covers it.

118

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Non-volatile
http://en.wikipedia.org/wiki/Floating-gate_transistor
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/UV_light
http://en.wikipedia.org/wiki/Field-effect_transistor
http://en.wikipedia.org/wiki/Floating_gate
http://en.wikipedia.org/wiki/Floating_gate
http://en.wikipedia.org/wiki/Floating_gate

Programming

Storing data in the memory requires selecting a given address and applying a higher
voltage to the transistors. This creates an avalanche discharge of electrons, which have
enough energy to pass through the insulating oxide layer and accumulate on the gate
electrode. When the high voltage is removed, the electrons are trapped on the electrode.
Because of the high insulation value of the silicon oxide surrounding the gate, the stored
charge cannot leak away and the data can be retained for many years.

Erasing

To erase the data stored in the array of transistors, ultraviolet light is directed onto the
die. Photons of the UV light cause ionization within the silicon oxide, which allow the stored
charge on the floating gate to dissipate. Since the whole memory array is exposed, all the
memory is erased at the same time. The process takes several minutes for UV lamps of
convenient sizes; sunlight would erase a chip in few weeks.

The erasing window must be kept covered with an opaque label to prevent accidental
erasure by the UV found in sunlight or camera flashes.

412 EEPROM (Electrically Erasable Programmable Read Only Memory)

EEPROM (Electrically Erasable Programmable ROM) is a ROM chip which can be
erased and re-programmed for unlimited number of times, without expensive or time-
consuming erasing processes. EEPROM is also called E’PROM (e-squared PROM) and
EAPROM (Electrically Alterable PROM).To erase the data, a relatively high voltage is
required. Only one external power supply is required since the high voltage for program/erase
is internally generated. In this way the memory device could run from a single supply,
thereby considerably reducing the cost of an overall circuit using an EEPROM and
simplifying the design. Write and erase operations are performed on a byte per byte basis.

EEPROM memory uses the same basic principle that is used by EPROM memory
technology. The memory cell has two field effect transistors. One of these is the floating gate
storage transistor. Electrons can be made to become trapped in this gate and the presence or
absence of electrons is referred as a ‘0’or a ‘1°. The other transistor is known as the access
transistor and it is required for the operational aspects of the EEPROM memory cell.

Comparison between EPROM and EEPROM

S. No. EPROM EEPROM
1. Erasing by UV light. Electrically erased.
Single byte erase is not
possible. When UV light is

2 passed, the complete data Single byte erase is possible.
will be erased.
3. Quartz window is provided Quartz window is not required.

for UV erasing.

Table : EPROM vs EEPROM

119

http://en.wikipedia.org/wiki/Die_(integrated_circuit)

4.13 Flash memory

Flash memory is a form of non-volatile memory (EEPROM) that can be electrically
erased and reprogrammed. It is erased and programmed in blocks consisting of multiple
locations (usually512 bytes in size). Flash memory costs far less than EEPROM and therefore
has become the dominant technology wherever a significant amount of non-volatile, solid-
state storage is needed.

Examples of Flash memory:

e Computer's BIOS (Basic Input Output System) chip
e USB flash drives

e Compact Flash (digital cameras)

e Smart Media (digital cameras)

e Memory Stick (digital cameras and cell phones)

There are two types of flash memory.

1. NOR flash
2. NAND flash

The characteristics of flash memory vary according to its type.
NOR flash

NOR-based flash has long erase and write times, but has a full address/data (memory)
interface that allows random access to any location. This makes it suitable for storage of
program code that needs to be infrequently updated, such as a computer's BIOS or the
firmware of set-top boxes. Its endurance is 10,000 to 1,000,000 erase cycles.

NAND flash

NAND flash has faster erase and write times, higher density, and lower cost per bit
than NOR flash, and ten times the endurance. However its I/O interface allows only
sequential access to data. This makes it suitable for mass-storage devices such as PC cards
and various memory cards, and somewhat less useful for computer memory.

A blank flash memory has all cells as 1’s.It can be read or programmed a byte or word
at a time in a random fashion, but it can only be erased a block at a time. Once a byte has
been programmed it cannot be changed again until the entire block is erased. Erasing is
applied to one or more blocks by the application of a high voltage that returns all cells to a 1
state.

Flash Memory — Program Operation

° +12V
| Control Gate |

GND | Floating Gate |

+6V
CICICIC)
? - = ?
®S%Durce Drain

Substrate

Figure : Flash memory — Program operation

120

Apply 6V between drain and source

Generates hot electrons that are swept across the channel from source to drain

Apply 12 V between source and control gate

The high voltage on the control gate overcomes the oxide energy barrier, and attracts the
electrons across the thin oxide, where they accumulate on the floating gate

e Called channel hot-electron injection (HEI)

Flash Memory — Erase Operation

G$l D
| Control Gate |
| Floating Gate |
+1 ?ZV o6 o

QS%DU'%@ Drain

Substrate

Figure : Flash memory — Erase operation
e Floating the drain, grounding the control gate, and applying 12V to the source

e A high electric field pulls electrons off the floating gate
e Called Fowler-Nordheim (FN) tunneling

Flash Memory — Read Operation

+5V
?
| Control Gate |
GND] Floating Gate \ +V
? ?
Source Drain
Substrate

Figure : Flash memory — Read operation
e Apply 5V on the control gate and drain, and source is grounded
e The drain to source current is detected by the sense amplifier
e The applied voltage on the control gate is not sufficient to turn it on. The absence of
current results in a 0 at the corresponding flash memory output
4.14 Anti fuse technology

In memory devices like ROM, we need to store a permanent ‘0’ or ‘1’ in memory
cells. Anti fuse is a technology used for storing one bit in memory cell.

121

An anti fuseis the opposite of a regular fuse. Anti fuse is normally an open circuit
until a programming currentis passed through it (about 5 mA). In a poly—diffusion anti fuse
the high current density causes a large power dissipation in a small area, which melts a thin
insulating dielectric between polysilicon and diffusion electrodes. This forms a thin (about 20
nm in diameter), permanent, and resistive silicon link.

Figure shows a poly—diffusion anti fuse with an oxide-nitride—oxide (ONO)
dielectric sandwich of silicon dioxide grown over the n-type anti fuse diffusion, a silicon
nitride layer, and another thin silicon dioxide layer.

Amorphous silicon column Polysilicon via
\l/ Metal
I ! /Oxide - :
1 T W]
A Metal

<— Substrate —>

(a) Un-Programmed (b) Programmed
Figure : Anti fuse technology
In its un-programmed state, the amorphous silicon acts as an insulator with a very
high resistance in excess of one billion ohms. The act of programming this particular element
effectively "grows™ a link by converting the insulating amorphous silicon into conducting
polysilicon.

Comparison between Flash memory and Anti fuse technology

S.No Parameter Flash memory Anti fuse
technology
1. Technology Floatl_ng Gate Oxide breakdown
Transistor
2. Endurance (Erasing Many Less than 5
Programming cycle)

3. Power consumption Medium Medium

4 Proarammin Can be done in the Can be done in the
' g g field itself field itself

5. System performance Low High

6. Design security No Very high

Table : Flash vs Anti fuse

O©OOOOO

122

UNIT -V
MICROPROCESSOR — 8085

5.1

Microprocessor - Introduction

Microprocessor is a multipurpose programmable integrated circuit (IC)

chip. It has computing and decision-making capabilities similar to the central
processing unit (CPU) of a computer. Figure 5.1 shows the parts of a
microprocessor based system. The microprocessor works as per the program
stored in memory. Data from the external world enters the microprocessor
through the input unit. Data may be sent to the external world through the
output input.

Microprocessor
—> Memory
ALU
Registers | [Input unit
Control
umnit * QOutput unit

Figure 5.1 : Microprocessor based system

Some of the important features of microprocessor are :

The microprocessor IC consists of ALU, Registers and Control unit.

1.

N

ALU - Arithmetic and Logic Unit. ALUperforms the computing and
decision making operations.

Registers—Registers are used for storing the internal temporary data.

Control unit — The control unit controls the operation of the microprocessor
and the devices connected to the microprocessor.

The microprocessor can understand a set of basic commands (instruction
set).

The microprocessor has several pins for transmitting address signals to the
memory and 1/0O (Input / Output) devices. These pins are known as address
bus.

The microprocessor has several pins for transmitting data signals to the
memory and 1/O devices. These pins are known as data bus.

The microprocessor has few pins for controlling the memory and 1/O
devices. These pins are known as control bus.

123

5.1.1 Evolution of microprocessor

The history of the development of microprocessor is given below:

4-bit microprocessors:

e 4004 was the first microprocessor introduced in

1971 by Intel Corporation, USA. Examples

e Operating on 4-bits of data at a time. _

e Has the capabilities for addition, subtraction, 4-bitdata : 0110
comparison and logical (AND and OR) operations. | 8-Pitdata:1011 0111

e Examples: Intel’s 4004, Intel’s 4040, 16-bit data : 1100 1111 0101
Rockwell International’s PPS4, Toshiba’s T3472 0111

8-bit microprocessors:

e 8008 was the first 8-bit microprocessor introduced in 1973 by Intel
Corporation, USA.

e Perform arithmetic and logical operations on 8-bit data.

e Examples: Intel’s 8008, Intel’s 8080, Intel’s 8085, Motorola’s M6800,
National Semiconductor’s NSC 800, Zilog Corporation’s Z80, Fairchild’s
F8, Hitachi’s 6809.

12-bit microprocessors:

e Performs arithmetic and logical operations on 12-bit data
e Examples : Intersil’s IM6100, Toshiba’s T3190

16-bit microprocessors:

e Performs arithmetic and logical operations on 16-bit data

e Examples : Intel’s 8086, Intel’s 8088, Intel’s 80286, Fairchild’s 9440, Data
General’s mN601, Texas Instrument’s TMS9900, Motorola’s M68000,
Zilog’s Z8000

32-bit microprocessors:

e Performs arithmetic and logical operations on 32-bit data

e Examples: Intel’s 80386, Intel’s 80486, Intel’s 1APX432, Motorola’s 68020,
Motorola’s 68030, National’s 32032, National’s 32523, Inmos’ T414,
Inmos’ T800

124

64-bit microprocessors:

e Performs arithmetic and logical operations on 64-bit data

e Intel’s Pentium microprocessor executes 100 million instructions per second
(MIPS).

e Examples: Intel’s Pentium (80586), Intel’s Pentium Pro, Intel’s Pentium II,
Celeron, Intel’s Pentium III and Intel’s Pentium IV

5.1.2 Introduction to 8085 Microprocessor

8085 Microprocessor was first introduced by Intel Corporation, USA in the
year 1976. It has 6,500 transistors. The important features of 8085 are given
below:

e 8-bit microprocessor. i.e. data bus width is 8 bits.

e 16-bit address bus. Hence, the maximum memory range is 64 Kilo Bytes
(2°). The lower order address lines A0 to A7 is multiplexed with the data
lines DO to D7.

Available in 3 MHz, 5 MHz and 6 MHz clock frequencies

Built-in clock generator circuit

Serial In and Serial Out data port for serial data communication

Three maskable and one non-maskable vectored interrupts

Decimal, binary and double precision arithmetic operations

Single +5V power supply

Available in 40 pin Dual Inline Package (DIP)

Pin diagram of 8085 Microprocessor

There are 40 pins in Intel 8085 microprocessor. The photo image is
shown in figure 5.2 and pin diagram is shown in figure 5.3.

Figure 5.2 : Intel 8085 microprocessor

125

X'_
XE
RST OUT
SOD
SID
TRAP
RST7.5
RST6.5
RST5.5
INTR
INTA
AD,
AD,
AD,
AD,
AD,
AD,
AD.
AD,

GND

CONOOHEWN -

10
1
12
13
14
15
16
17
18
19
20

¢

8085

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

VCC
HOLD
HLDA

CLK OUT
RST IN

READY
1O/M
S,

RD
WR
ALE

Figure 5.3 : Pin diagram of Intel 8085 microprocessor

The signals are classified into the following categories.

S.No.

Group

1. Address bus

2 Multiplexed Address / Data bus

3. Control and Status signals

4 Peripheral initiated signals
Clock signals

6. Reset signals

7 Interrupt signals

8. Serial 1/0 signals

9. Power supply and Ground signals

126

The signal diagram is shown in figure 5.4.

Serial Ifd _SID
signals ":l SoD

TRAP
RST 7.5
=
RST 6.5

RST 5.5
INTR
INTA
-

Interrupt
signals

Reset ‘ RESET TN

signals "{ RESET OUT
otT

Clock ‘
signals t

Power supply signal

+ 5V

Veo

-

40

L Address
bus

s

12-18 t Address /

(Data bus

I -

30

= o
[

INTEL

8085 Control and

Status signals

a3
34
3z
31

30
38 Peripherals

initiated signals

35

20

| Vss

Ground signal

Figure 5.4 : Signal diagram of Intel 8085 microprocessor

Pin

Signal name
number g

Description

Address Bus

21-28 | As—Ass

Higher order byte (8 bits) of address bus. The address bus
is unidirectional (one-way, ie. microprocessor to memory).

Multiplexed Address / Data

bus

12-19 | ADg—-ADy

Lower order byte (8 bits) address bus (Ag - A7).

And

Data bus (8 bits) (Do — D7).The data bus is bidirectional
(two-wayie. microprocessor to memory and memory to
MIiCroprocessor).

Control and Status signals

ALE - Address Latch Enable.
Used for de-multiplexing the Address / Data bus. i.e.

30 ALE separating the lower order address lines (Ao — A7) and data
lines (Dy — D7) from (ADo — AD).

29 So The microprocessor indicates its status (memory write,

33 Si memory read, 1/0 write, 1/O read, Opcode fetch, Halt,
Hold, Reset) through these three output pins. I0/M will be

34 I0/M ‘1’ for I/O operation and ‘0’ for memory operation.

127

L This is an active low signal. It will be 0 during memory
32 RD read and 1/O read operation.

L This is an active low signal. It will be 0 during memory
31 WR write and /O write operation.

Peripheral initiated signals

This pin is used for interfacing slow devices with the

35 READY MiCroprocessor.
39 HOLD DMA (Direct Memory Access) signals:
HOLD (hold request)
38 HLDA HLDA (hold acknowledge)
Clock signals
Used for connecting the crystal for generating the clock
1,2 | X, Xe signal.

37 CLK OUT

Clock signal for the peripheral devices.

Reset signals

36 RESETIN

Used to apply reset signal to the microprocessor. When this pin
goes low, the microprocessor is reset and begins executing the
instruction from the memory location 0000. All the registers
inside the microprocessor is reset to zero.

3 RESET Used to reset the peripheral devices.
ouT
Interrupt signals
6 TRAP
7 RST 7.5 Interrupt request input signals to the microprocessor.
8 RST 6.5
9 RST 5.5
10 INTR
Interrupt Acknowledgesignal from the microprocessor to the
11 INTA peripheral devices.

Serial 1/0O signals

5 SID

Serial Input Data. Used to receive serial data bits.

4 SOD

Serial Output Data. Used to transmit serial data bits.

Power supply and Ground signals

40 Vce

20 | Vss

Power supply pins.
+5V to Ve
GND to Vss

128

5.1.3

Architecture of 8085 Microprocessor

The internal architecture (block diagram) of 8085 Microprocessor is shown

in figure 5.5.
INTA RST65 TRAP
INTR IRSTSS RST 75 SOD
l Interrupt Contro! J Senal VO Control
O 8-Bit Internal Data Bus
Accumulator Temp. Reg Instruction S
" (8) (8) Register (8)
w & z @)
Temp. Reg. Temp. Reg
Flag (5) B (8) c (8
Flip-Flops i Reg Reg.
& D @& E &
V Instruction § Reg. Reg
Arithmetic A - H & L ® Register
LG"': e} Machine ~ Reg Reg Array
b Cycle
(16)
"‘LU’(S) = Encoding Stack Pointer
| (16)
L Program Counter
s V— Incrementer/Decrementer
P S L Address Latch (16
omer Suppty—{ GND))
Timing and Contro!
= -
= .CLK Reset ns)l (8)
X, ——ed GEN Control Status DMA A L Address Buffer [DatwvAddress Buffer l
|
, I IRREEREER }‘ !
CLK OouUT RD WR ALE §, S, IOM HLDA RESET OUT ADAD
. ———— As-Ay = o
READY HOLD RESET IN Abiesin B Address/Data Bus

Figure 5.5 : Architecture of 8085 Microprocessor

The following are the functional blocks in the 8085Microprocessor.
Accumulator

Temporary register

Arithmetic and Logic Unit (ALU)

Flag register

Instruction Register

Instruction Decoder and Machine cycle encoder
General purpose registers

Stack Pointer

. Program Counter

10.Incrementer / Decrementer

11.Timing and Control unit

12.Interrupt control

13.Serial 1/0O control

14.Address buffer and Address / Data buffer

CoNoGRwWNE

129

1. Accumulator (A-register)

It is an 8-bit register. It is associated with ALU. The accumulator is also
called A-register. During the arithmetic / logic operations, one of the operand is
available in Accumulator. The result of the arithmetic / logic operations is also
stored in the Accumulator.

2. Temporary (TEMP) register

It is an 8-bit register. It is also associated with ALU. This register is used to
hold one of the data (from memory or general purpose registers) during an
arithmetic / logic operation.

3. Arithmetic and Logic Unit (ALU)

The Arithmetic and Logic Unit includes Accumulator, Temporary register,
arithmetic and logic circuits and flag register. The ALU can perform arithmetic
(such as addition and subtraction) and logic operations (such as AND, OR and
EX-OR) on 8-bit data. It receives the data from accumulator and or TEMP
register. The result is stored in the accumulator. The conditions of the result
(such as carry, zero) are indicated in the flags.

4. Flag register

It is an 8-bit register. But only five bits are used. The flag positions in the
flag register are shown in figure 5.6.

D; Ds Ds D, D; D, D; Dy
S|Z|-|AC| - |P|-|CY

Figure 5.6 : Flag register of 8085

The flags are affected by the arithmetic and logic operations in the ALU. The
flag register is also known as Status register or Condition code register. There
are five flags namely Sign (S) flag, Zero (Z) flag, Auxiliary Carry (AC) flag,
Parity (P) flag and Carry (CY) flag.

e Sign (S) flag: Sign flag is set (1) if the bit D; of the result in the accumulator
Is 1, otherwise it is reset (0). This flag is set when the result is negative. This
flag is used only for signed numbers.

e Zero (Z) flag: Zero flag is set (1) if the result in the accumulator is zero,
otherwise it is reset (0).

130

e Auxiliary Carry (AC): Auxiliary Carry flag is set (1) if there is a carry from
bit position Dsof result in the accumulator, otherwise it is reset (0). This flag
is used for BCD operations.

o Parity (P) flag: Parity flag is set (1) if the result in the accumulator has even
number of 1s, otherwise it is reset (0).

e Carry (CY) flag: Carry flag is set (1) if the result of an arithmetic operation
results in a carry from bit position D, otherwise it is reset (0). This flag is
also used to indicate a borrow condition during subtraction operations.

5. Instruction register

When an instruction is fetched from memory, it is stored in the Instruction
register. It is an 8-bit register. This resister cannot be used in the programs.

6. Instruction Decoder and Machine cycle encoding

This unit decodes the instruction stored in the Instruction register. It
determines the nature of the instruction and establishes the sequence of events
to be followed by the Timing and control unit.

7. General purpose registers

There are six 8-bit general purpose registers namely B, C, D, E, H and L
registers. B and C registers are combined together as BC register pair for 16-bit
operations. Similarly D and E registers can be used as DE resister pair and H
and L as HL register pair. The HL register pair is also used as memory pointer
(M-register) for storing 16-bit address in some instructions.There are two more
8-bit temporary registers W and Z. These registers are used to hold data during
the execution of some instructions. W and Z registers cannot be used in
programs.

8. Stack Pointer (SP)

Stack is a portion of memory (RAM) used as FILO (First In Last Out)
buffer. This is mainly used during subroutine operations. Stack Pointer is a 16-
bit register used as a memory pointer (16-bit address) for denoting the stack
position in memory. The Stack pointer is decremented each time when data is
loaded into the stack and incremented when data is retrieved from the stack.
Stack pointer always points to the top of the stack memory.

131

9. Program Counter (PC)

The Program Counter (PC) is a 16-bit register. It is used to point the address
of the next instruction to be fetched from the memory. When one instruction is
fetched from memory, PC is automatically incremented to point out the next
instruction.

10.Incrementer / Decrementer

This unit is used to increment or decrement the contents of the 16-bit
registers.

11.Timing and Control unit

This unit synchronizes all the microprocessor operations with the clock and
generates the control signals necessary for communication between
microprocessor and peripherals. The internal clock generator is available in this
unit.This unit has the micro programs for all the instructions to carry out the
micro steps required in completing the instructions. This unit receives signals
from the Instruction decoder and Machine cycle encoding unit and generates
control signals according to the micro-program for the instruction.

12.Interrupt control

There are five hardware interrupts available in 8085 Microprocessor namely
TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR for interfacing the peripherals
with the microprocessor. These interrupts are handled by the Interrupt control

unit. INTA signal is generated by the Interrupt control unit as an

acknowledgement for an interrupting device. If two or more interrupts occur at
the same time, service is given according to the priority basis.

13.Serial 1/O control

Serial data is transmitted to the peripherals through SOD pin and received
through the SID pin. The SOD and SID pins are handled by the Serial 1/0
control unit using the SIM and RIM instructions.

14.Address buffer and Address / Data buffer

The Address buffer is an 8-bit unidirectional buffer from which the higher
order address bits Ag — A5 leaves the microprocessor to the memory and
peripherals. The Address / Data buffer is an 8-bit bidirectional buffer used for
sending the lower order address bits A, — A; and sending and receiving the data
bits Dy — D7 to the memory and peripherals.

132

5.2 Instruction set and Addressing modes

5.2.1 Instruction format

The format of 8085 microprocessor instructions is shown in figure.

Operand

Opcode

Operand-1 | Operand-2
8-bits 8-bits 8-bits

Figure : 5.7 Instruction format of 8085 microprocessor
The instruction has two parts, Opcode and Operand.

Opcode : Represents the operation to be performed on the operand. It is also
called mnemonic.

Operand : Data or address is given in this part. If the operand is an 8-bit data,
only Operand-1 is present in the instruction. If the operand is a 16-bit data or
address, Operand-1 and Operand-2 are specified in the instruction. Both
Operand-1 and Operand-2 are optional.

5.2.2 Classification of instructions based on size

There are three groups of instructions in 8085 microprocessor based on the
length or size of the instruction. They are,

1. Single byte (or 1 byte) instructions

2. Two byte instructions

3. Three byte instructions

Single byte instructions

Byte 1
D7 DG D5 D4 D3 D2 Dl DO

Opcode

This type of instruction has only Opcode and the operand is specified
within the Opcode itself.

Example : 1) MOV B, C i) ADDB

133

Two byte instructions

Byte 1 Byte 2

D7 | Dg|Ds|Dy| D3| D; | Dy |Dg| |D7|Dg|Ds|Dg|Ds|Dy| D Do

Opcode Operand-1

This type of instruction has Opcode and one operand. The first byte
represents the Opcode and the second byte represents the 8-bit operand data or
8-bit port address.

Example : 1) MVI A, 50H i) OUT 50H
Three byte instructions
Byte 1 Byte 2 Byte 3
D|D|D|D|D|D|D|D D|D|D|D|D|D|D|D D|D|D|D|D|D|D D
Opcode Operand-1 Operand-2

This type of instruction has Opcode and two operands. The first byte
represents the Opcode, the second byte presents the lower order 8-bits of data or
address and the third byte represents the higher order 8-bits of data or address.

Example : 1) STA 5000H i) LXI B, 5000H

5.2.3 Classification of instructions based on function

There are 246 instructions (74 types) in the 8085 microprocessor. Based on
the function of the instruction, the instructions are classified into the following
five types.

1. Data transfer instructions

2. Arithmetic instructions

3. Logic and bit manipulation instructions

4. Branch instructions

5. Machine control instructions

Data transfer instructions

These instructions move (or copy) data from source to destination. The
source and destination are registers and memory. Memory to memory transfer is
not possible. After the data transfer, the content of the source is not modified
and the earlier content of the destination is altered. No flags are affected.
Examples : 1) MOV A,B 2) MOVA M

134

Arithmetic instructions

Arithmetic operations like addition, subtraction, increment and decrement
are performed by this category of instructions. One of the operand is taken from
the Accumulator and the other operand may be from registers or memory. The
result of the arithmetic operations is stored in the Accumulator. All the flags are
affected.

Examples : 1) ADD B i) INRA

Logic and bit manipulation instructions

Logical functions like AND, OR and EX-OR are performed by this
instructions. All logic functions are performed in relation with the contents of
the Accumulator. All the flags are affected.

Examples : 1) ANA B i) CMA

Branch instructions

Branch instructions change the sequence of the program execution
unconditionally or conditionally. The condition of flags is used to take the
decision for conditional branches. No flags are affected.

Examples : i) JMP 5000H i) JNZ 5000H
Machine control instructions

The instructions dealing with interrupt handling and system operations
are classified into this category. No flags are affected.

Examples : 1) HLT i) El

5.2.4 Instruction set

5.2.4.1 Data Transfer Instructions

S.No Instruction Example
Move - Copy from source to destination
MOV Rd, Rs MOV B, C
MOV M, Rs MOV M, A
1. |MOVRd,M MOV B, M

This instruction copies the contents of the source register into the destination
register; the contents of the source register are not altered.

135

Move immediate 8-bit

| MVIRd, data MVI B, S0H
" | MVI M, data ’
The 8-bit data is stored in the destination register or memory.
Load accumulator direct
3 LDA 16-bit address LDA 5000H
" | The contents of a memory location, specified by a 16-bit address in the operand,
are copied to the accumulator.
Load accumulator indirect LDAX B
4 LDAX Reg. pair LDAX D
" | The contents of the designated register pair point to a memory location. This
instruction copies the contents of that memory location into the accumulator.
Load register pair immediate LXI B, 5000H
LXI Reg. pair, 16-bit data LXI D, 5000H
5. LXI H, 5000H
LXI SP, 5000H
The instruction loads 16-bit data in the register pair designated in the operand.
Load H and L registers direct
LHLD 16-bit address LHLD 5000H
6. | The instruction copies the contents of the memory location pointed by the 16-bit
address into register L and copies the contents of the next memory location into
register H.
Store accumulator direct STA 5000H
7 STA 16-bit address
" | The contents of the accumulator are copied into the memory location specified by
the operand.
Store accumulator indirect STAXB
8 STAX Rx STAX D
" | The contents of the accumulator are copied into the memory location specified by
the contents of the operand (register pair).
Store H and L registers direct SHLD 5000H
SHLD 16-bit address
9. | The contents of register L are stored into the memory location specified by the
16-bit address in the operand and the contents of H register are stored into the
next memory location.
Exchange H and L with D and E XCHG
10. XCHG . . .
The contents of register H are exchanged with the contents of register D, and the
contents of register L are exchanged with the contents of register E.
Co_py H and L registers to the stack SPHL
pointer
11. | SPHL

Loads the contents of the H and L registers into the stack pointer register.

136

Exchange H and L with top of stack

pointer XTHL
12 XTHL
" | The contents of the L register are exchanged with the stack location pointed by
the contents of the stack pointer register. The contents of the H register are
exchanged with the next stack location (SP+1).
Push register pair onto stack PUSH B
PUSH Reg. pair PUSH D
13 (PSW ‘Processor Status Word” means | PUSH H
" | Accumulator and Flag register) PUSH PSW
The contents of the register pair designated in the operand are copied onto the
stack.
POP B
Pop off stack to register pair POP D
14 POP Reg. pair POP H
' POP PSW
The contents of the memory location pointed out by the stack pointer register are
copied to registers specified.
Output data from accumulator to a
port with 8-bit address OUT 50H
15. | OUT 8-hbit port address
The contents of the accumulator are copied into the 1/O port specified by the
operand.
Input data to accumulator from a port
with 8-bit address IN 50H
16. | IN 8-bit port address

The contents of the input port designated in the operand are read and loaded into

the accumulator.

5.2.4.2 Arithmetic Instructions

S.No Instruction Example

Add register or memory to
accumulator ADD B

1 ADDR ADD M

" |ADDM

The contents of the operand (register or memory) are added to the contents of the
accumulator and the result is stored in the accumulator.
Add register to accumulator with carry ADC B
ADCR ADC M

5 ADC M

The contents of the operand (register or memory) and the Carry flag are added to
the contents of the accumulator and the result is stored in the accumulator.

137

Add immediate to accumulator

ADI 8-bit data

ADI 45H

3 The 8-bit data (operand) is added to the contents of the accumulator and the result
is stored in the accumulator.
Add immediate to accumulator with
carry ACI 45H
4. | ACI 8-bit data
The 8-bit data (operand) and the Carry flag are added to the contents of the
accumulator and the result is stored in the accumulator.
Add register pair to H and L registers DAD H
5 DAD Reg. pair _ _ _
" | The 16-bit contents of the specified register pair are added to the contents of the
HL register and the sum is stored in the HL register.
Subtract register or memory from
accumulator SUBB
6 SUBR SUBM
" |SUBM
The contents of the operand (register or memory) are subtracted from the
contents of the accumulator, and the result is stored in the accumulator.
Subtract source and borrow from
accumulator SBB B
SBBR SBB M
7. |SBB M
The contents of the operand (register or memory) and the Borrow (carry flag) are
subtracted from the contents of the accumulator and the result is placed in the
accumulator.
Subtract immediate from accumulator
o | SUI 8-bit data SUI45H
" | The 8-bit data (operand) is subtracted from the contents of the accumulator and
the result is stored in the accumulator.
Subtract immediate from accumulator
with borrow SBI 45H
9. | SBI 8-hit data
The 8-bit data (operand) and the Borrow (carry flag) are subtracted from the
contents of the accumulator and the result is stored in the accumulator.
Increment register or memory by 1 INR B
INR R INR M
10. [INRM
The content of the designated register or memory is incremented by 1 and the
result is stored in the same place.
. : INX B
Increment register pair by 1
11. | INX Reg. pair INXD
' INX H

The contents of the designated register pair are incremented by 1 and the result is

138

stored in the same place.

Decrement register or memory by 1 DCR B
DCRR DCR M
12. |DCR M
The content of the designated register or memory is decremented by 1 and the
result is stored in the same place.
Decrement register pair by 1 DCX B
DCX Reg. pair DCXD
13. DCXH
The contents of the designated register pair are decremented by 1 and the result is
stored in the same place.
Decimal adjust accumulator
DAA DAA
The contents of the accumulator are changed from a binary value to two 4-bit
14 binary coded decimal (BCD) digits. If the value of the low-order 4-bits in the

accumulator is greater than 9 or if AC flag is set, the instruction adds 6 to the
low-order four bits If the value of the high-order 4-bits in the accumulator is
greater than 9 or if the Carry flag is set, the instruction adds 6to the high-order
four bits.

5.2.4.3 Logic and bit manipulation instructions

S.No

Instruction Example

Compare register or memory with

accumulator CMP B
CMPR CMP M

CMP M

The contents of the operand (register or memory) are compared with the contents
of the accumulator. Both contents are preserved. The result of the comparison is
shown by setting the flags of the PSW as follows:

if (A) < (reg/mem): carry flag is set

if (A) = (reg/mem): zero flag is set

if (A) > (reg/mem): carry and zero flags are reset

Compare immediate with accumulator | cp| 50H
CPI 8-bit data

The second byte (8-bit data) is compared with the contents of the accumulator.
The values being compared remain unchanged. The result of the comparison is
shown by setting the flags of the PSW as follows:

if (A) < data: carry flag is set

if (A) = data: zero flag is set

if (A) > data: carry and zero flags are reset

139

Logical AND register or memory with

accumulator ANA B
ANA R ANA M
3 ANA M
The contents of the accumulator are logically ANDed (bitwise) with the contents
of the operand (register or memory), and the result is placed in the accumulator.
Logical AND immediate with
accumulator ANI 50H
4. | ANI 8-bit data
The contents of the accumulator are logically ANDed with the 8-bit data
(operand) and the result is placed in the accumulator.
Exclusive OR register or memory with
accumulator XRAB
; XRA R XRA M
" | XRAM
The contents of the accumulator are Exclusive ORed with the contents of the
operand (register or memory), and the result is placed in the accumulator.
Exclusive OR immediate with
accumulator XRI'50H
6. | XRI 8-bit data
The contents of the accumulator are Exclusive ORed with the 8-bit data
(operand) and the result is placed in the accumulator.
Logical OR register or memory with
accumulator ORAB
. ORAR ORA M
" |ORAM
The contents of the accumulator are logically ORed with the contents of the
operand (register or memory), and the result is placed in the accumulator.
Logical OR immediate with
accumulator ORI 50H
8. | ORI 8-bit data
The contents of the accumulator are logically ORed with the 8-bit data (operand)
and the result is placed in the accumulator.
Rotate accumulator left RLC
9 RLC
" | Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed
in the position of DO as well as in the Carry flag.
Rotate accumulator right RRC
10 RRC
" | Each binary bit of the accumulator is rotated right by one position. Bit DO is
placed in the position of D7 as well as in the Carry flag.
11 Rotate accumulator left through carry RAL

RAL

140

least significant position DO.

Each binary bit of the accumulator is rotated left by one position through the
Carry flag. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the

Rotate accumulator
carry
RAR

right through

RAR

12.

most significant position D7.

Each binary bit of the accumulator is rotated right by one position through the
Carry flag. Bit DO is placed in the Carry flag, and the Carry flag is placed in the

Complement accumulator
13. |CMA

CMA

The contents of the accumulator are complemented.

Complement carry

17. | cMC CMC
The Carry flag is complemented.
Set Carr
18. |sTC y STC
The Carry flag is set to 1.
5.2.4.4 Branch instructions
S.No Instruction Example
Jump unconditionally JMP 5000H
1 JMP 16-bit address
| The program sequence is transferred to the memory location specified by the 16-
bit address given in the operand.
Jump conditionally JC 5000H
J condition 16-bit address JNC 5000H
JP 5000H
JM 5000H
JZ 5000H JNZ 5000H
JPE 5000H JPO 5000H
The program sequence is transferred to the memory location specified by the 16-
bit address given in the operand based on the specified flag.
2. Opcode Description Flag Status
JC Jump on Carry Cy=1
JNC Jump on No Carry CY=0
JP Jump on Positive S=0
JM Jump on Minus S=1
JZ Jump on Zero Z=1
JNZ Jump on No Zero Z=0
JPE Jump on Parity Even P=1
JPO Jump on Parity Odd P=0

141

Unconditional subroutine call CALL 5000H
CALL 16-bit address

The program sequence is transferred to the memory location specified by the 16-
bit address given in the operand. Before the transfer, the address of the next
instruction after CALL (the contents of the program counter) is pushed onto the
stack.

Call conditionally CC 5000H

Ccondition 16-bit address CNC 5000H
CP 5000H

CM 5000H
CZ 5000H
CNZ 5000H
CPE 5000H
CPO 5000H

The program sequence is transferred to the memory location specified by the 16-
bit address given in the operand based on the specified flag of the PSW as
described below. Before the transfer, the address of the next instruction after the
call (the contents of the program counter) is pushed onto the stack.

Opcode Description Flag Status
CcC Call on Carry Cy=1
CNC Call on No Carry CY=0
CP Call on Positive S=0

CM Call on Minus S=1

Cz Call on Zero Z=1
CNZ Call on No Zero Z=0
CPE Call on Parity Even P=1
CPO Call on Parity Odd P=0
Return from subroutine
unconditionally RET
RET

The program sequence is transferred from the subroutine to the calling program.
The two bytes from the top of the stack are copied into the program counter, and
program execution begins at the new address.

RC 5000H
Return from subroutine conditionally | RNC 5000H

Rcondition 16-bit address RP 5000H

RM 5000H
RZ 5000H
RNZ 5000H
RPE 5000H
RPO 5000H

142

The program sequence is transferred from the subroutine to the calling program
based on the specified flag of the PSW as described below. The two bytes from
the top of the stack are copied into the program counter, and program execution

begins at the new address.

Opcode Description Flag Status
RC Return on Carry Cy=1
RNC Return on No Carry CY=0

RP Return on Positive S=0

RM Return on Minus S=1

RZ Return on Zero Z=1

RNZ Return on No Zero Z=0

RPE Return on Parity Even P =1

RPO Returnon ParityOdd P =0
Load program counter with HL
contents PCHL
PCHL

The contents of registers H and L are copied into the program counter. The
contents of H are placed as the high-order byte and the contents of L as the low-

order byte.

Restart
RST 0-7

RSTO
RST1
RST 2
RST 3
RST 4
RST 5
RST 6
RST 7

The RST instruction is equivalent to a 1-byte call instruction to one of eight
memory locations depending upon the number. The addresses are:

Instruction Restart Address

RST O 0000H
RST 1 0008H
RST 2 0010H
RST 3 0018H
RST 4 0020H
RST 5 0028H
RST 6 0030H
RST 7 0038H

143

5.2.4.5 Machine control instructions

S.No | Instruction Example
No operation
1 NOP NOP

No operation is performed. The instruction is fetched and decoded. However no
operation is executed.

Halt and enter wait state

, HLT HLT
" | The CPU finishes executing the current instruction and halts any further
execution. An interrupt or reset is necessary to exit from the halt state.
Disable interrupts DI
DI
3 The interrupt enable flip-flop is reset and all the interrupts except the TRAP are
disabled.
Enable interrupt E|
El
4 The interrupt enable flip-flop is set and all interrupts are enabled. No flags are
affected.
Read interrupt mask
RIM RIM
This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5,
5.5 and read serial data input bit. The instruction loads eight bits in the
accumulator with the following interpretations.
D, D, D¢ D, D D, D Dy
5 (SD[17 [16 [I5]IE[75[65[5.5]
' '] ! ! i
Serial input | Interrupt
data bit — masked 1if
bit = |
Interrupts | Interrupt enable
pending 1f — flip-flop is set
bit = 1 if bit = 1
Set interrupt mask
SIM SIM
This is a multipurpose instruction and used to implement the8085 interrupts 7.5,
7. | 6.5, 5.5, and serial data output. The instruction interprets the accumulator

contents as follows.

144

0 M7.5—D,
[1 M6.5—D,
0 M5.5—D,

D, D, D D Dy Dy D Dy

[SOD | SDE | XXX [R7.5 | MSE [M7.5 | M6.5 | M5.5 |

J [| I I
1
Serial output data Reset R7.5 Masks interrupts
ifD, =1 if bits = 1
Serial data enable Mask set
1 = Enable enable if <
0 = Disable D; =1

1 SOD—Serial Output Data: Bit D, of the accumulator is latched into the SOD output
line and made available to a serial peripheral if bit D, = 1.

7 SDE — Serial Data Enable: If this bit = 1, it enables the serial output. To implement
serial output, this bit needs to be enabled.

0 XXX—Den't Care

1 R7.5—Resct RST 7.5: If this bit = 1, RST 7.5 flip-flop is reset. This is an additional
control to reset RST 7.5.

7] MSE — Mask Set Enable: If this bit is high, it enables the functions of bits Dy, Dy, Dy.
This is a master control over all the interrupt masking bits. If this bit is low, bits D,
D,, and D, do not have any effect on the masks.

0, RST 7.5 is enabled.
1, RST 7.5 is masked or disabled.
0, RST 6.5 is enabled.
1. RST 6.5 is masked or disabled.
0, RST 5.5 is enabled.
1, RST 5.5 is masked or disabled.

5.2.5 Addressing modes

The method of specifying the location of operand in an instruction is called

addressing mode. There are five types of addressing modes in 8085
MICroprocessor.

aObhowhpE

Direct addressing mode

Immediate addressing mode

Register addressing mode

Register indirect addressing mode
Implicit (or) implied addressing mode

145

Direct addressing mode

In direct addressing mode, the address of the operand is directly
specified in the instruction. In this addressing mode, the instruction is two or
three bytes long. The first byte is the Opcode. The operand may be a 16-bit (2
bytes) memory address or an 8-bit (1 byte) port address.

Examples:
S. No | Instruction | Remarks
This instruction stores the content of the accumulator in memory
1. | STA 5000 location 5000.
Here, the memory address is given directly in the instruction.
This instruction loads the data from memory location 5000
2> | LDA 5000 accumulator.
Here, the memory address is given directly in the instruction.
This instruction loads the data from input port 80.
3. |IN80 Here, the port address is directly given in the instruction.

Immediate addressing mode

In immediate addressing mode, the operand itself is immediately given
after the Opcode. The instruction is two or three bytes long. The first byte is
the Opcode. The operand may be a 16-bit (2 bytes) immediate data or an 8-bit
(1 byte) immediate data.

Examples:
S.No | Instruction | Remarks
This instruction immediately moves the data 50 into the
1. MVI A. 50 accumulator.
’ Here, the data is given immediately after the Opcode.
This instruction immediately moves the data 2050 into the
2 LX| B. 2050 | register pair BC. 20 to B register and 50 to C register. Here, the
data is given immediately after the Opcode.

Register addressing mode

In register addressing mode, a register is specified as the operand in the
instruction. The instruction is one byte long. The register name is specified in
the Opcode itself.

146

Examples:

S.No |Instruction | Remarks
This instruction adds the content of B register with the
1. ADD B accumulator.
Here, the data is in the register B.
This instruction moves the D register value to C register. Here,
2. |MOVC,D | Cand D registers are specified as the operands.

Reqister indirect addressing mode

In register indirect addressing mode, the content of the register pair is

used as the address of the operand in the instruction. The instruction is one
byte long. The register pair contains the 16-bit address of the memory location
where the actual operand is stored.

Examples:

S. No

Instruction

Remarks

STAXB

This instruction stores the accumulator value in memory
location whose address is specified by the BC register pair.
Here, the address is indirectly specified in the register pair.

MOV A/ M

This instruction moves the data from memory to accumulator.
M means memory whose address is specified in HL register
pair.

Here, address of the operand is indirectly specified in the HL
register pair.

Implicit or Implied addressing mode

In implied addressing mode, a particular register is implicitly specified

as the operand in the instruction. The instruction is one byte long. This
addressing mode is also known as implied addressing mode and inherent
addressing mode.

Examples:
S.No | Instruction Remarks
This instruction complements the contents of the accumulator.
1. CMA Here, Accumulator is implicitly specified in the instruction.
This instruction rotates the contents of the accumulator left
2 RLC one time.
Here, Accumulator is implicitly specified in the instruction.

147

5.3 Machine cycle and Instruction cycle

5.3.1 Machine cycle

Machine cycle is defined as the time required for completing one operation
of accessing memory, 1/0 or acknowledging an external request. Machine cycle
Is comprised of T-states. T-state is defined as one subdivision of the operation
performed in one clock period. The following are the various machine cycles of
8085 microprocessor.

Opcode Fetch (OF)
Memory Read (MR)
Memory Write (MW)

I/0 Read (IOR)

1/0O Write (IOW)

Interrupt Acknowledge (1A)
. Bus Idle (BI)

All instructions have at least one Opcode Fetch machine cycle. Depending
on the type of instruction one or more other machine cycles are required to
complete the execution of the instruction. The number and type of machine
cycles for different instructions are shown in table.

NogakowdE

Number
. of Machine | Machine | Machine | Machine
S.No Instruction .

machine | cycle—1 | cycle-2 | cycle-3 |cycle-4

cycles
1. MOV A, B 1 OF - - -
2. MVI A, 50H 2 OF MR - -
3. LDA 5000H 4 OF MR MR MR
4, STA 5000H 4 OF MR MR MW
5. IN 80H 3 OF MR IOR -
6. OuUT 80H 3 OF MR IOW -

5.3.1.1 Opcode Fetch (OF) machine cycle of 8085

Each instruction of the microprocessor has one byte Opcode. The Opcode
Is stored in memory. So, the processor executes the Opcode Fetch machine
cycle to fetch the Opcode from memory. Hence, every instruction starts with
Opcode Fetch machine cycle. The time taken by the microprocessor to execute
the Opcode Fetch cycle is 4T (T- states). The first 3 T-states are used for
fetching the Opcode from memory and the remaining T-state is used for internal
operations by the microprocessor.

148

The timing diagram for Opcode Fetch machine cycle is shown in figure

5.10.
SIGNAL T, T, T, T,
cLock N\ / _/ |
AAy >(HIGHER | ORDER MEMORY | ADDRESS UNSPECIFIED

AD,-AD, >(oveesomn | ¥4 0PCODE| @Dy)\ ---------
ALE [/ \
\

[OM,S, S, >< \loﬂ=o. S, =15=1

o \ /

Figure 5.10 : Timing d'iagram of Opcode Fetch machine cycle

The steps in Opcode Fetch machine cycle are given in table.

S. No T state | Operation
The microprocessor places the higher order 8-bits
of the memory address on A15 — A8 address bus

L and the lower order 8-bits of the memory address
on AD7 — ADO address / data bus.
The microprocessor makes the ALE signal HIGH
2 T and at the middle of T1 state, ALE signal goes
LOW.
The status signals are changed as 10/M = 0, S1
3. =1 and S0 = 1. These status signals do not

change throughout the OF machine cycle.

The microprocessor makes the RD line LOW to
4. enable memory read and increments the Program
T, Counter.

The contents on D7 — DO (i.e. the Opcode) are

> placed on the address / data bus.

5 The microprocessor transfers the Opcode on the
' - address / data bus to Instruction Register (IR).

v 3 The microprocessor makes the RD line HIGH to
' disable memory read.

8. T, The microprocessor decodes the instruction.

149

5.3.1.2Memory Read Machine Cycle of 8085

Single byte instructions require only Opcode Fetch machine cycles. But,
2-byte and 3-byte instructions require additional machine cycles to read the
operands from memory. The additional machine cycle is called Memory Read
machine cycle. For example, the instruction MVI A, 50H requires one OF
machine cycle to fetch the operand from memory and one MR machine cycle to
read the operand (50H) from memory. The MR machine cycle takes 3 T-states.

The timing diagram for Memory Read machine cycle is shown in figure

5.11.

SIGNAL

T, T, T,

Ash, | X

HIGHER ORDER MEMORY ADDRESS

LOWER-ORDER
MEMORY ADDR > """"" DATA (D;-Dy)

ALE |/ \

10M38, S, | X

mfﬁso,\ S, =1 | Sp=0

RD

i e

Figure 5.11 : Timing Diagram for Memory Read Machine Cycle
The steps in Memory Read machine cycle are given in table.

Operation

S.No | T state
1.
2 T,
3.

The microprocessor places the higher order
8-bits of the memory address on Al5 — A8
address bus and the lower order 8-bits of the
memory address on AD7 - ADO
address / data bus.

The microprocessor makes the ALE signal
HIGH and at the middle of T1 state, ALE
signal goes LOW.

The status signals are changed as 10/M = 0,
S1 =1 and SO = 0. These status signals do
not change throughout the memory read
machine cycle.

150

http://www.8085projects.info/images/Timing-Diagram-Pic3-pic39.png

The microprocessor makes the RD line
4. LOW to enable memory read and increments
T2 the Program Counter.
The contents on D7 — DO (i.e. the data) are
placed on the address / data bus.
The data loaded on the address / data bus is
- moved to the microprocessor.

3

5 The microprocessor makes the RD line
' HIGH to disable the memory read operation.

5.3.1.3Memory Write Machine Cycle of 8085

Microprocessor uses the Memory Write machine cycle for sending the
data in one of the registers to memory. For example, the instruction STA 5000H
writes the data in accumulator to the memory location 5000H. The MW
machine cycle takes 3 T-states.

The timing diagram for Memory Write machine cycle is shown in figure
5.12.

SIGNAL T, T, T,
caock N/ N N |

AsA, [X HIGHER | ORDER ADDRESS

AD,-AD,), AN ((DATA | (D,-D))\
ALE [/ \

I0M,S, S, .
WR /

Figure 5.12 : Timing Diagram for Memory Write Machine Cycle

The steps in Memory Write machine cycle are given in table.

S.No | T State | Operation

The microprocessor places the higher order 8-bits
of the memory address on A15 — A8 address bus

L and the lower order 8-bits of the memory address
T, on AD7 — ADO address / data bus.

The microprocessor makes the ALE signal HIGH

2. and at the middle of T1 state, ALE signal goes

LOW.

151

The status signals are changed as 10/M = 0, S1

3. =0 and SO = 1. These status signals do not change
throughout the memory write machine cycle.
4 The microprocessor makes the WR line LOW to

T, enable memory write.
The contents of the specified register are placed
on the address / data bus.
The data placed on the address / data bus is
- transferred to the specified memory location.
3

5 The microprocessor makes the WR line HIGH to
' disable the memory write operation.

5.3.1.41/0 Read Machine Cycle of 8085

Microprocessor uses the I/0 Read machine cycle for receiving a data byte
from the 1/O port or from the peripheral in 1/0O mapped 1/O systems. The IN
instruction uses this machine cycle during execution. The IOR machine cycle
takes 3 T-states.

The timing diagram for 1/0 Read machine cycle is shown in figure 5.13.

SIGNAL T, T; T,

CLOCK __/—__/v

A A, >< {/0O Port addrcss

AD‘J'ADO x I/O Port address > ----- f DATA DyD)
ALE / \
10/M,S, S, X oM=1, | s,=1 | Sg=0

_ J 1

RD

Figure 5.13 Timing Diagram for 1/O Read Machine Cycle

The steps in 1/O Read machine cycle are given in table.

S.No | T State | Operation

The microprocessor places the address of the 1/0
port specified in the instruction on Al5 — A8
address bus and also on AD7 — ADO address /
data bus.

1. T,

152

The microprocessor makes the ALE signal HIGH

2. and at the middle of T1 state, ALE signal goes
LOW.
The status signals are changed as 10/M =0, S1 =1
3. and SO = 0. These status signals do not change
throughout the 1/0O read machine cycle.
4 The microprocessor makes the RD line LOW to
T, enable 1/0 read. _
5 The contents on D7 — DO (i.e. the data) are placed
' on the address / data bus.
The data loaded on the address / data bus is
6. moved to the microprocessor ie., to the
T, accumulator.
v The microprocessor makes the RD line HIGH to

disable the 1/O read operation.

5.3.1.5 1/O Write Machine Cycle of 8085

Microprocessor uses the 1/0 Write machine cycle for sending a data byte
to the I/O port or to the peripheral in 1/O mapped I/O systems. The OUT
instruction uses this machine cycle during execution. The IOR machine cycle
takes 3 T-states.

The timing diagram for 1/0 Write machine cycle is shown in figure 5.14.

SIGNAL T, T, T,
CLOCK __/__—u——w
Ay >(PORT ADDRESS

AD,- AD,, :>(PORT ADDRESS) --------- DATA (Dy-Dy) -
ALE - |/ \ '

I0/M,S, S, | X oM-1, S, -0, | Sg=1

Figure 5.14 : Timing Diagram for 1/0O Write Machine Cycle

153

The steps in 1/O Read machine cycle are given in table.

S.No | T State | Operation
The microprocessor places the address of the 1/0
1 port specified in the instruction on Al5 — A8
' address bus and also on AD7 — ADO address / data
bus.
The microprocessor makes the ALE signal HIGH
2. T and at the middle of T1 state, ALE signal goes
LOW.
The status signals are changed as I0/M = 0, S1 =0
3. and SO = 1. These status signals do not change
throughout the 1/0 write machine cycle.
4 The microprocessor makes the WR line LOW to
' T, enable /O write.
The contents of the Accumulator are placed on the
5.
address / data bus.
5 The data placed on the address / data bus is
' - transferred to the specified 1/0O port.
v 3 The microprocessor makes the WR line HIGH to
' disable the 1/O write operation.

5.3.2 Instruction cycle

Timing diagram for MOV Rd, Rs (or MOV r1, r2) instruction

MOV Rd, Rs instruction moves (copies) the contents of the source
register (Rs) into the destination register (Rd). It is a single byte instruction. It

has only Opcode Fetch machine cycle.
Some examples for MOV Rd, Rs instruction:

1. MOV A, B
2. MOV C, L

The time taken by the processor to execute the Opcode Fetch cycle is 4T (T-
states). The first 3 T-states are used for fetching the Opcode from memory and
the remaining T-state is used for internal operations by the microprocessor. The
timing diagram for MOV Rd, Rs (Opcode Fetch machine cycle) is shown in

figure 5.14. It has 4 T states.

154

SIGNAL T, T, T T,
T8 N NIV N e
AcAy X HIGHER | ORDER MEMORY | ADDRESS I;NSPECIFIED
AD-AD, | Semi| g orcone| 000 Jyf-cee
ALE |/ \ \
)\ l

[0S, S, [X \iom-0] s -t5,-1

= \ /

Figure 5.14 Timing Diagram for MOV Rd, Rs instruction
(Opcode Fetch Machine Cycle)

The steps for machine cycle of MOV Rd, Rs instruction are given in table.

S.No | T state | Operation

The microprocessor places the higher order 8-
bits of the Program Counter on Al5 — A8
address bus and the lower order 8-bits of the
Program Counter on AD7 ADO
address / data bus.

The microprocessor makes the ALE signal
HIGH and at the middle of T1 state, ALE

signal goes LOW.

The status signals are changed as 10/M = 0,
S1 =1 and SO = 1. These status signals do not
change throughout the OF machine cycle.

The microprocessor makes the RD line LOW
to enable memory read (opcode fetch) and
increments the Program Counter.

The contents on D7 — DO (i.e. the Opcode) are
placed on the address / data bus.

The microprocessor transfers the Opcode on
the address / data bus to Instruction Register
(IR).

The microprocessor decodes the instruction.
The data in the register Rs (r,) is moved to the
register Rd (ry).

T1

T2

T3

T4

155

5.4 1/O Mapping and Interrupts

5.4.1 1/0 Mapping schemes

I/O interfacing

There are two methods of interfacing the Input / Output devices with the
microprocessor. They are,1) Memory mapped 1/0 and 2) 1/0 mapped 1/O.

5.4.1.1 Memory mapped I/O

In this method the 1/O devices are treated like the memory. A part of the
memory address space is used for the I/O devices. The memory mapped 1/0O
scheme is shown in figure 5.8.

0000 - FFFF
AQ - A7
A8 —
Memory
DO - D7 and
> o
RD
—_—>
WR
—_—

Figure 5.8 : Memory mapped 1/0O scheme

¢ In memory mapped I/O scheme, the same address space is used for both
memory and 1/O devices.

e The microprocessor uses the sixteen address line A0 — A7 and A8 — Al5
for the memory as well as for the 1/O devices.

e The 1/O devices share the address space with the memory. All the
memory related instructions are used for addressing 1/0O devices also.

e No separate IN and OUT instructions are required in memory mapped
I/0 scheme.

e 10/M pin is not required.

156

Steps for memory operations (memory read and memory write) :

1. When the memory related instructions like LDA and STA are used, the
microprocessor places the 16-bit address on the address bus.

2. RD is activated for read operation and WR is activated for write operation.

Steps for 1/0 operations (1/0 read and 1/O write) :

The same steps used for memory operations are used for 1/O operations also.

5.4.1.2 1/0 mapped I/O

In this method, I/O devices are treated as 1/O devices and memory is
treated as memory. Separate address space is used for memory and 1/O. The 1/0
mapped 1/0 scheme is shown in figure ¢ 4900 . FrEE

A0 - A7

;

A8 —

ll

Memory
D0 - D7

5

WR

|

10/M

00 - FF
A0 — A7

ll

DO - D7

I/0

o

10/M T

—1>‘,_,_

Figure 5.9 : 1/0 mapped 1/0 scheme

157

e In I/O mapped I/0O scheme, the microprocessor uses the sixteen address
lines Aq — A; and Ag — A5 for the memory and eight address lines A, to
A-to identify an input / output device.

e Here, the full address space 0000 — FFFF is used for the memory and a
separate address space 00 — FF is used for the 1/O devices.

e Hence, the microprocessor can address 65536 (2'°) memory locations 256
(2%) input devices and 256 (2°) output devices separately.

e IN and OUT instructions are used to activate the I0/M signal.

e When IO/M is low, the memory is selected for reading and writing
operations.

e When I0/M is high, the 1/0 port is selected for reading and writing
operations.

Steps for memory operations (memory read and memory write) :

1. When the memory related instructions like LDA and STA are used, the
microprocessor places the 16-bit address on the address bus.

2. The microprocessor makes the 10/M linelow.

3. The microprocessor makes the RDlow for read operation and WRIlow for
write operation.

Steps for 1/O operations (1/0 read and 1/O write) :

1. When the 1/O related instructions like IN and OUT are used, the
microprocessor places the 8-bit address on the address bus Aq — A7 as well as
Ag — Ass.

2. 10/M line is made high.

3. The microprocessor makes the RD low for read operation and WR low for
write operation.

5.4.1.3 Differences between Memory mapped 1/0 ad I/O mapped I/O

S.No. | Memory mapped I/O I/0 mapped 1/O
1. | 16-bit device address. 8-bit device address.
Data s transferred Data is transferred only
between any general-
2. . between accumulator and 1/O
purpose register and 1/0
port.
port.
The memory map (64K) | The I/O map is independent
3 Is shared between 1/O |of the memory map; 256
" |device and system | input devices and 256 output
memory. devices can be connected.
More hardware is |Less hardware is
4. |required to decode |required to decode 8-bit
16- bit address. address.

158

Arithmetic or logic
5. | operation can be directly
performed with 1/O data.

Arithmetic or logical
operation cannot be directly
performed with 1/O data.

6. | 10/M pin is not required.

IO/M pin is required.

Instructions like LDA,
7. STA, MOV R,M and
ADD M are used.

IN and OUT instructions are
used.

5.4.2 Interrupts

Interrupts are the signals send by an external device to the microprocessor
to request the microprocessor to perform a particular task or work. Interrupts are
used for data transfer between the peripheral and the microprocessor. The
microprocessor will check the interrupts always at the 2nd T-state of last
machine cycle. If there is any interrupt, it accepts the interrupt and sends the
INTA signal to the peripheral. The microprocessor executes an interrupt service

routine (ISR) stored in memory. It returns to the main program by RET
instruction, after the ISR is executed. The interrupt process is shown in figure

5.15.

Main
Program

Interrupt
arrives

——
—

Control
returned to
Main program

Control
transferred ISR
to ISR

Figure 5.15 : Interrupt process

5.4.2.1 Types of interrupts

There are six types of interrupts. They are,

Hardware interrupts
Software interrupts
Maskable interrupts
Non-maskable interrupts
Vectored interrupts
Non-vectored interrupts

ok wdE

159

Hardware interrupts : These interrupts are given by the peripheral devices to
the interrupt pin (hardware) of the microprocessor. Hardware interrupts are also
called external interrupts.

Software interrupts : These interrupts are internally generated within the
microprocessor using software instructions. Software interrupts are also called
internal interrupts.

Maskable interrupts : These external interrupts can be delayed or rejected by
the microprocessor.

Non-maskable interrupts : These external interrupts cannot be delayed or
rejected by the microprocessor. Non-maskable interrupts are used for handling
emergency situations.

Vectored interrupts : When the address of the Interrupt Service Routine (ISR)
Is fixed within the microprocessor itself, then the interrupt is called Vectored
interrupt.

Non-vectored interrupts : When the address of the Interrupt Service Routine
(ISR) is supplied by the peripheral device, then the interrupt is called Non-
vectored interrupt.

5.4.2.2 8085 interrupts

In 8085 microprocessor, there are 5 interrupts as shown in figure 5.16.
1. TRAP
2. RST5.5
3. RST6.5
4, RST75
5. INTR

TRAP —
RST 5.5 ——»

RST 6.5 ———»
8085

Microprocessor

RST 7.5 ——
INTR —

INTA +——

Figure 5.16 : 8085 Interrupts
In additional to these hardware interrupts, 8085 microprocessor has eight
software interrupts. The RESTART instructions RST 0 to RST 7 are software
interrupt instructions.

160

5.4.2.3 Interrupt priority

The microprocessor can respond to only one interrupt at one time. When
multiple (more than one) interrupts occur simultaneously, the microprocessor
will service the interrupts in their fixed priority order. Interrupt having the
highest priority level will be serviced first. In 8085, TRAP interrupt has the
highest priority and INTR has the lowest priority.

TRAP

This interrupt is a non-maskable interrupt. It is unaffected by any mask or
interrupt enable.

It is a vectored interrupt. The interrupt vector address is 0024H.

TRAP has the highest priority level.

TRAP interrupt is edge and level triggered. This means that the TRAP must
go high and remain high until it is acknowledged.

In emergency situations like sudden power failure, it executes an ISR and
sends the data from main memory to backup memory.

RST 7.5

The RST 7.5 interrupt is a maskable interrupt.

It is a vectored interrupt. The interrupt vector address is 003CH.

It has the second highest priority.

It is edge triggered. ie. Input goes to high and no need to maintain high state
until it is recognized and acknowledged.

RST 6.5

The RST 6.5 interrupt is a maskable interrupt.
It is a vectored interrupt. The interrupt vector address is 0034H.
It has the third highest priority.

It is level triggered. ie. Input goes to high and stays high until it is
recognized and acknowledged.

RST 5.5

The RST 5.5 interrupt is a maskable interrupt.

It is a vectored interrupt. The interrupt vector address is 002CH.

It has the fourth highest priority.

It is level triggered. ie. Input goes to high and stays high until it is
recognized and acknowledged.

INTR

INTR is a maskable interrupt.

It is a non- vectored interrupt. After receiving INTA, the peripheral has to
supply the address of ISR.

161

e |t has the lowest priority.
o It is a level triggered. ie. Input goes to high and it is necessary to maintain
high state until it is recognized and acknowledged.

Process of INTR interrupt
1. The interrupt process should be enabled using the EI instruction.
2. The 8085 checks for an interrupt during the execution of every instruction.

3. If INTR is high, the microprocessor completes current instruction, disables
the interrupt and sends INT A signal to the peripheral device.

4. INTA allows the peripheral device to send an RST instruction through data
bus.

5. Upon receiving the INTA signal, the microprocessor saves the memory
location of the next instruction on the stack and the program is transferred to
‘call’ location (ISR Call) specified by the RST instruction.

6. Microprocessor executes the ISR.

7. ISR must include the ‘EI’ instruction to enable the further interrupt within
the program.

8. The RET instruction at the end of the ISR retrieves the return address from
the stack and the program is transferred back to main program which was
interrupted.

5.4.2.4 Instructions for Interrupts handling in 8085 microprocessor
There are four instructions available for interrupts handling. They are,

1. DI (Disable Interrupt)

2. El (Enable Interrupt)

3. SIM (Set Interrupt Mask)
4. RIM (Read Interrupt Mask)

DI (Disable Interrupt)

This instruction resets the Interrupt Enable Flip-flop inside the microprocessor.
All the interrupts except the TRAP are disabled.

El (Enable Interrupt)

This instruction sets the Interrupt Enable Flip-flop inside the microprocessor.
All the interrupts are enabled.

SIM (Set Interrupt Mask)

This instruction is used to selectively mask (disable) and unmask (enable) RST
7.5, RST 6.5 and RST 5.5 interrupts. This instruction is also used for serial data
output. The SIM the instruction uses the accumulator contents for masking and
unmasking the interrupts.

162

DT Dﬁ D5 D'4 D] D; D] D.[}
[SOD | SDE | XXX | R7.5 [MSE [M7.5 [M6.5 | M5.5 |

J l 1 I I
!
Serial output data Reset R7.5 Masks interrupts
ifD, =1 if bits = 1
Serial data enable «— Mask set
1 = Enable enable if «
0 = Disable Dy =1

1 SOD— Serial Output Data: Bit D, of the accumulator is latched into the SOD output
line and made available to a serial peripheral if bit Dy = 1.

) SDE — Serial Data Enable: If this bit = 1, it enables the serial output. To implement
serial output, this bit needs to be enabled.

1 XXX—Don't Care

[] R7.5—Reset RST 7.5: If this bit = 1, RST 7.5 flip-flop is reset. This is an additional
control to reset RST 7.5.

7] MSE — Mask Set Enable: If this bit is high, it enables the functions of bits Dy, Dy, Dy.
This is a master control over all the interrupt masking bits. If this bit is low, bits D,
D,, and D, do not have any effect on the masks.

(] M7.5—D, = 0, RST 7.5 is enabled.

I, RST 7.5 is masked or disabled.

[1 M6.5—D, = 0, RST 6.5 is enabled.

I, RST 6.5 is masked or disabled.

0 M5.5—D, = 0, RST5.51s enabled.

= |, RST 5.5 is masked or disabled.

Figure 5.17 : Bits used in SIM instruction

Example :

The following instructions are used to enable interrupt RST 5.5 and disable RST
7.5and RST 6.5 :

D, D¢ Ds D, D; D, D, Do
olololol1]21]12] 0

MVI A, OEH :BitsD;=1and Dy =0
SIM - Enable RST 5.5

163

RIM (Read Interrupt Mask)

This instruction is used to read the status of RST 7.5, RST 6.5 and RST
5.5 interrupts like pending and enable / disable details. This instruction is also
used for reading the serial data. When the RIM instruction is given, the
microprocessor loads the details into the accumulator.

D, D, Dy D, Dy D, D D
[SD[1716 |15[IE[75]65]55

I I B S B
Serial input ' Interrupt
data bit > masked 1f
bit = 1
Interrupts | Interrupt enable
pending if — flip-flop is set
bit = 1 if bit = 1

Figure 5.18 : Bits used in RIM instruction

Bits D6, D5 and D4 give the pending details of RST 7.5, RST 6.5 and
RST 5.5 interrupts respectively. Bits D2, D1 and DO give the masked /
unmasked details of RST 7.5, RST 6.5 and RST 5.5 interrupts respectively. Bit
D3 gives the status of Interrupt enable Flip-flop.

Example :

Suppose after the execution of RIM instruction, the accumulator has 49H. The
meanings are:

0 1 0 0 1 0 0 1
Serial input -1
datais 0 — RST 5.5 masked
R8T 7.51s
pending RST 7.5 and
Interrupt Enable RST 6.5 are enabled
f———

flip-flop is set

Figure 5.19 : Example for RIM instruction

164

5.4.2.5 Summary of 8085 interrupts

Interrupt Vector address Priority Type
: Hardware interrupt
TRAP 00244 1p(rli_|olﬂ?;)s ¢ Vectored interrupt
Non-maskable interrupt
Hardware interrupt
RST7.5 003Cy 2 Vectored interrupt
Maskable interrupt
Hardware interrupt
RST6.5 0034y 3 Vectored interrupt
Maskable interrupt
Hardware interrupt
RST5.5 002Cy 4 Vectored interrupt
Maskable interrupt
5 (Lowest Hardware interrupt
INTR -- oriority) Non-vectored interrupt
Maskable interrupt
RST 0 - 00004
RST 1 - 00084
RST Eﬂ g 8812: Software interrupt
: . -- Vectored interrupt
Instruction RST 4 - 00204 Maskable interrupt
RST 5 - 00284
RST 6 - 00304
RST 7 - 0038y
COOOOOO

165

